Abstract
Anterior cruciate ligament (ACL) reconstruction involves the replacement of the torn ligament with a new graft, often a hamstring tendon (HT). Described as similar, the ACL and HT have intrinsic differences related to their distinct anatomical locations. From a cellular perspective, identifying these differences represents a step forward in the search for new cues that enhance recovery after the reconstruction. The purpose of this study was to characterize the phenotype and multilineage potential of ACL- and HT-derived cells. ACL- and HT-derived cells were isolated from tissue harvest from patients undergoing total knee arthroplasty (TKA) or ACL reconstruction. In total, three ACL and three HT donors were investigated. Cell morphology, self-renewal potential (CFU-F), surface marker profiling, expression of tendon/ligament-related markers (PCR) and multilineage potential were analysed for both cell types; both had fibroblast-like morphology and low self-renewal potential. No differences in the expression of tendon/ligament-related genes or a selected set of surface markers were observed between the two cell types. However, differences in their multilineage potential were observed: while ACL-derived cells showed a high potential to differentiate into chondrocytes and adipocytes, but not osteoblasts, HT-derived cells showed poor potential to form adipocytes, chondrocytes and osteoblasts. Our results demonstrated that HT-derived cells have low multilineage potential compared to ACL-derived cells, further highlighting the need for extrinsic signals to fully restore the function of the ACL upon reconstruction.
Original language | English |
---|---|
Pages (from-to) | 1077-1088 |
Number of pages | 12 |
Journal | Journal of tissue engineering and regenerative medicine |
Volume | 11 |
Issue number | 4 |
Early online date | 11 Mar 2015 |
DOIs | |
Publication status | Published - 7 Apr 2017 |
Keywords
- Anterior Cruciate Ligament reconstruction
- Hamstring Tendon-derived cells
- Anterior Cruciate
- Ligament-derived cells
- Multilineage potential
- n/a OA procedure