TY - JOUR
T1 - Anticipating climate change
T2 - knowledge use in participatory flood management in the river Meuse
AU - Wesselink, A.J.
AU - Reuber, J.
AU - Krol, M.S
PY - 2006
Y1 - 2006
N2 - Given the latest knowledge on climate change, the Dutch government wants to anticipate the increased risk of flooding. For the river Meuse in The Netherlands, the design discharge is estimated to increase from 3800m3/s to 4600m3/s. With the existing policy of “Room for the River”, this increase is to be accommodated without raising the dikes. At the same time the floodplains are often claimed for other functions, e.g. new housing or industrial estates. In 2001 the Ministry of Transport, Public Works and Water Management started the study “Integrated assessment of the river Meuse (IVM)” with the objectives of making an inventory of the probable physical effects of a design flood, assuming climate change, on the river Meuse in 2050, investigating possible spatial and technical measures to mitigate these effects, and finally combining various measures to create an integral strategy for flood protection, while at the same time increasing spatial quality. This paper presents the results of research into the decision making process that took place in order to achieve these objectives. Special attention was given to the role of scientific and technical knowledge in the decision making process, e.g. by investigating the effect of the quality of input data on acceptance by stakeholders, and the interactive use of a decision support system to visualise hydraulic effects. Conclusions on successes and pitfalls are drawn from observation and interviews with participants. It demonstrates how it is possible to integrate the necessary, technically complex knowledge in a political debate with stakeholders on how to deal with flood risk. Furthermore, the experience indicates in what area improvements could be made.
AB - Given the latest knowledge on climate change, the Dutch government wants to anticipate the increased risk of flooding. For the river Meuse in The Netherlands, the design discharge is estimated to increase from 3800m3/s to 4600m3/s. With the existing policy of “Room for the River”, this increase is to be accommodated without raising the dikes. At the same time the floodplains are often claimed for other functions, e.g. new housing or industrial estates. In 2001 the Ministry of Transport, Public Works and Water Management started the study “Integrated assessment of the river Meuse (IVM)” with the objectives of making an inventory of the probable physical effects of a design flood, assuming climate change, on the river Meuse in 2050, investigating possible spatial and technical measures to mitigate these effects, and finally combining various measures to create an integral strategy for flood protection, while at the same time increasing spatial quality. This paper presents the results of research into the decision making process that took place in order to achieve these objectives. Special attention was given to the role of scientific and technical knowledge in the decision making process, e.g. by investigating the effect of the quality of input data on acceptance by stakeholders, and the interactive use of a decision support system to visualise hydraulic effects. Conclusions on successes and pitfalls are drawn from observation and interviews with participants. It demonstrates how it is possible to integrate the necessary, technically complex knowledge in a political debate with stakeholders on how to deal with flood risk. Furthermore, the experience indicates in what area improvements could be made.
KW - ADLIB-ART-3127
KW - Flood management
KW - Spatial quality
KW - Participatory decision making
KW - Knowledge use
KW - Hydraulic model
KW - Climate change
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2006/peer_jrnl/wesselink_ant.pdf
M3 - Article
SN - 1105-7580
SP - 3
EP - 14
JO - European water
JF - European water
IS - 15/16
ER -