Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices

Thomas Heisig*, Joe Kler, Hongchu Du, Christoph Baeumer, Felix Hensling, Maria Glöß, Marco Moors, Andrea Locatelli, Tevfik Onur Menteş, Francesca Genuzio, Joachim Mayer, Roger A. De Souza, Regina Dittmann

*Corresponding author for this work

Research output: Contribution to journalSpecial issueAcademicpeer-review

17 Citations (Scopus)
13 Downloads (Pure)


Resistive switching in transition metal oxide-based metal-insulator-metal structures relies on the reversible drift of ions under an applied electric field on the nanoscale. In such structures, the formation of conductive filaments is believed to be induced by the electric-field driven migration of oxygen anions, while the cation sublattice is often considered to be inactive. This simple mechanistic picture of the switching process is incomplete as both oxygen anions and metal cations have been previously identified as mobile species under device operation. Here, spectromicroscopic techniques combined with atomistic simulations to elucidate the diffusion and drift processes that take place in the resistive switching model material SrTiO3 are used. It is demonstrated that the conductive filament in epitaxial SrTiO3 devices is not homogenous but exhibits a complex microstructure. Specifically, the filament consists of a conductive Ti3+-rich region and insulating Sr-rich islands. Transmission electron microscopy shows that the Sr-rich islands emerge above Ruddlesden–Popper type antiphase boundaries. The role of these extended defects is clarified by molecular static and molecular dynamic simulations, which reveal that the Ruddlesden–Popper antiphase boundaries constitute diffusion fast-paths for Sr cations in the perovskites structure.

Original languageEnglish
Article number2004118
JournalAdvanced functional materials
Issue number48
Publication statusPublished - 25 Nov 2020
Externally publishedYes


  • diffusion
  • resistive switching
  • Ruddlesden–Popper
  • SrTiO
  • STEM


Dive into the research topics of 'Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices'. Together they form a unique fingerprint.

Cite this