Automated Rare Event Simulation for Stochastic Petri Nets

Research output: Contribution to conferencePaper

68 Downloads (Pure)


We introduce a method to automatically apply rare event simulation to stochastic Petri nets, which are often used in the stochastic model checking community to model highly reliable systems. Rare event simulation can be much faster than standard simulation by exploiting information about the typical behaviour of the system. Previously, such information came from heuristics, human insight, or analysis on the full state space. We present a formal algorithm that obtains the required information from the (high-level) stochastic Petri net description, without generating the full state space. Essentially, our algorithm reduces the state space of the model to a (much smaller) graph in which each node represents a set of states for which the most likely path to failure has the same form. An earlier version of this work has been presented to the model checking commmunity (at QEST 2013). We believe that the described methodology, which has since then been improved through a correctness proof and a more efficient initial state space partitioning, may also be of interest to the RESIM community.
Original languageEnglish
Number of pages2
Publication statusPublished - Aug 2014
Event10th International Workshop on Rare Event Simulation, RESIM 2014 - Amsterdam, The Netherlands
Duration: 27 Aug 201429 Aug 2014


Workshop10th International Workshop on Rare Event Simulation, RESIM 2014
OtherAugust 27-29, 2014


Dive into the research topics of 'Automated Rare Event Simulation for Stochastic Petri Nets'. Together they form a unique fingerprint.
  • Automated rare event simulation for stochastic Petri nets

    Reijsbergen, D., de Boer, P-T., Scheinhardt, W. R. W. & Haverkort, B., 2013, Quantitative Evaluation of Systems: 10th International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Joshi, K., Siegle, M., Stoelinga, M. & d' Argenio, P. R. (eds.). Berlin, Heidelberg: Springer, p. 372-388 17 p. (Lecture Notes in Computer Science; vol. 8054).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    13 Citations (Scopus)
    9 Downloads (Pure)

Cite this