Automation of hemocompatibility analysis using image segmentation and supervised classification

Johanna Clauser*, Judith Maas, Jutta Arens, Thomas Schmitz-Rode, Ulrich Steinseifer, Benjamin Berkels

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)
64 Downloads (Pure)


The hemocompatibility of blood-contacting medical devices remains one of the major challenges in biomedicalengineering and makes research in the field of new and improved materials inevitable. However, current in-vitro test and analysis methods are still lacking standardization and comparability, which impedes advancesin material design. For example, the optical platelet analysis of material in-vitro hemocompatibility tests iscarried out manually or semi-manually by each research group individually.As a step towards standardization, this paper proposes an automation approach for the optical platelet countand analysis. To this end, fluorescence images are segmented using Zach’s convexification of the multiphase-phase piecewise constant Mumford–Shah model. The non-background components then need to be classified asplatelet or no platelet. For this purpose, a supervised random forest is applied to feature vectors derived fromthe components using features like area, perimeter and circularity. With an overall high accuracy (>93%) andlow error rates (≤5%), the random forest achieves reliable results. This is supported by high areas under thereceiver–operator characteristic curve (≥0.94) and the prediction–recall curve (≥0.77), respectively.We developed a novel method for a fast, user-independent and reproducible analysis of material hemocom-patibility tests. The automatized analysis method overcomes the current obstacles in the way of standardizedin-vitro material testing and is therefore a unique and powerful tool for advances in biomaterial research.
Original languageEnglish
Article number104009
JournalEngineering applications of artificial intelligence
Early online date6 Nov 2020
Publication statusPublished - 1 Jan 2021


  • Random forest
  • Standardization
  • In-vitro test
  • Segmentation
  • Platelet characterization


Dive into the research topics of 'Automation of hemocompatibility analysis using image segmentation and supervised classification'. Together they form a unique fingerprint.

Cite this