(Average-) convexity of common pool and oligopoly TU-games

Theo Driessen, H. Meinhardt

Research output: Contribution to journalArticleAcademicpeer-review


The paper studies both the convexity and average-convexity properties for a particular class of cooperative TU-games called common pool games. The common pool situation involves a cost function as well as a (weakly decreasing) average joint production function. Firstly, it is shown that, if the relevant cost function is a linear function, then the common pool games are convex games. The convexity, however, fails whenever cost functions are arbitrary. We present sufficient conditions involving the cost functions (like weakly decreasing marginal costs as well as weakly decreasing average costs) and the average joint production function in order to guarantee the convexity of the common pool game. A similar approach is effective to investigate a relaxation of the convexity property known as the average-convexity property for a cooperative game. An example illustrates that oligopoly games are a special case of common pool games whenever the average joint production function represents an inverse demand function
Original languageEnglish
Pages (from-to)141-158
JournalInternational game theory review
Issue number2-3
Publication statusPublished - 2001


  • METIS-203215


Dive into the research topics of '(Average-) convexity of common pool and oligopoly TU-games'. Together they form a unique fingerprint.

Cite this