Abstract
The bandgap of iron-doped ZnS has been reported by others to change significantly under the addition of a few atomic percent of iron, which would have significant implications for solar energy. Here, thin films of FexZn1-xS with x = 0 to 0.24 were made by co-deposition of Fe and ZnS using thermal evaporation. In contrast to results on nanoparticles and electrodeposited materials, all co-deposited films had optical properties consistent with a direct bandgap of ~3-3.5 eV. The absorption peak at 2.7 µm from substitutional Fe2+ in the ZnS films was well isolated up to concentrations of over 2% (~1021cm−3), despite the small crystallite size, suggesting the films may have applications as mid-infrared saturable absorbers. Increasing dopant concentration resulted in band edge softening. Density functional calculations are presented and are consistent with our observations of the Fe:ZnS films, demonstrating spin-polarized midgap states and additional states at the band edge.
Original language | English |
---|---|
Pages (from-to) | 1613-1620 |
Number of pages | 1 |
Journal | Optical materials express |
Volume | 5 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2015 |