TY - JOUR
T1 - Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling
AU - Wehrle, Lukas
AU - Schmider, Daniel
AU - Dailly, Julian
AU - Banerjee, Aayan
AU - Deutschmann, Olaf
N1 - Funding Information:
The Steinbeis GmbH für Technologietransfer (STZ 240 Reaktive Strömung) is gratefully acknowledged for a cost-free academic license of DETCHEMTM. Financial support by the German federal ministry for economic affairs and energy (Bundesministerium für Wirtschaft und Energie, BMWi) under Grant Numbers 03EIV041D and 03EIV041E in the “MethFuel” group of the collaborative research project “MethQuest” is gratefully acknowledged. Lukas Wehrle would also like to thank Dr. Yuqing Wang from Beijing Institute of Technology for the very insightful discussions during the course of this work.
Funding Information:
Financial support by the German federal ministry for economic affairs and energy (Bundesministerium für Wirtschaft und Energie, BMWi) under Grant Numbers 03EIV041D and 03EIV041E in the “MethFuel” group of the collaborative research project “MethQuest” is gratefully acknowledged.
Publisher Copyright:
© 2022
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Power-to-Gas (PtG) is prognosticated to realize large capacity increases and create substantial revenues within the next decade. Due to their inherently high efficiencies, solid oxide electrolysis cells (SOECs) have the potential to become one of the core technologies in PtG applications. While thermal integration of the high-temperature SOEC module with downstream exothermic methanation is a very potent concept, the performance of SOECs needs to be boosted to amplify the technologies impact for future large-scale plants. Here, we use a combined experimental and modelling approach to benchmark commercial electrolyte- (ESC) and cathode-supported cell (CSC) designs on industrial-scale planar SOEC stack performance. In a first step, comprehensive electrochemical and microstructural analyses are carried out to parametrize, calibrate and validate a detailed multi-physics 2D cell model, which is then used to study the cells’ behaviour in detail. The analysis reveals that there exists a cell-specific threshold steam conversion of ∼80% for the ESC and ∼75% for the CSC design, which represents a maximum of the total (heat plus electrical) electrolysis efficiency. Moreover, while the ESC-design suffers from performance reductions under pressurized conditions, considerable performance increases of ∼9% at 20 atm (700 °C, 1.35 V) compared to atmospheric pressure are predicted for the CSC design, showcasing a unique advantage of the CSC cell for process integration with the catalytic methanation. Subsequently, based on a 3D stack model, a scale-up to the industrial stack size is conducted. To comparatively assess stack performances under application-oriented conditions, optimization studies are carried out for 150-cell stack units based on the two cell designs individually. When optimally selecting the stack operation points, the model predicts the CSC-based stack to reach a high capacity up to 36.6 kW (∼10.6 Nm3 H2 h−1) at 1.35 V and 700 °C, whilst ensuring reasonably low temperature gradients (<10 K cm−1) and sweep gas cooling requirements (<30 sccm cm−2). Thus, CSC-design stacks incorporating such a highly active cell design can be expected to further boost the competitiveness of high-temperature electrolysis in PtG plant concepts.
AB - Power-to-Gas (PtG) is prognosticated to realize large capacity increases and create substantial revenues within the next decade. Due to their inherently high efficiencies, solid oxide electrolysis cells (SOECs) have the potential to become one of the core technologies in PtG applications. While thermal integration of the high-temperature SOEC module with downstream exothermic methanation is a very potent concept, the performance of SOECs needs to be boosted to amplify the technologies impact for future large-scale plants. Here, we use a combined experimental and modelling approach to benchmark commercial electrolyte- (ESC) and cathode-supported cell (CSC) designs on industrial-scale planar SOEC stack performance. In a first step, comprehensive electrochemical and microstructural analyses are carried out to parametrize, calibrate and validate a detailed multi-physics 2D cell model, which is then used to study the cells’ behaviour in detail. The analysis reveals that there exists a cell-specific threshold steam conversion of ∼80% for the ESC and ∼75% for the CSC design, which represents a maximum of the total (heat plus electrical) electrolysis efficiency. Moreover, while the ESC-design suffers from performance reductions under pressurized conditions, considerable performance increases of ∼9% at 20 atm (700 °C, 1.35 V) compared to atmospheric pressure are predicted for the CSC design, showcasing a unique advantage of the CSC cell for process integration with the catalytic methanation. Subsequently, based on a 3D stack model, a scale-up to the industrial stack size is conducted. To comparatively assess stack performances under application-oriented conditions, optimization studies are carried out for 150-cell stack units based on the two cell designs individually. When optimally selecting the stack operation points, the model predicts the CSC-based stack to reach a high capacity up to 36.6 kW (∼10.6 Nm3 H2 h−1) at 1.35 V and 700 °C, whilst ensuring reasonably low temperature gradients (<10 K cm−1) and sweep gas cooling requirements (<30 sccm cm−2). Thus, CSC-design stacks incorporating such a highly active cell design can be expected to further boost the competitiveness of high-temperature electrolysis in PtG plant concepts.
KW - 3D stack model
KW - Multi-scale modelling
KW - Optimization
KW - Power-to-Methane
KW - Solid oxide electrolysis cell (SOEC)
UR - http://www.scopus.com/inward/record.url?scp=85130216388&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2022.119143
DO - 10.1016/j.apenergy.2022.119143
M3 - Article
AN - SCOPUS:85130216388
SN - 0306-2619
VL - 317
JO - Applied energy
JF - Applied energy
M1 - 119143
ER -