Best monotone degree conditions for graph properties: a survey

D. Bauer, Haitze J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D.R. Woodall, M. Yatauro

  • 9 Citations

Abstract

We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.
Original languageUndefined
Pages (from-to)1-22
Number of pages22
JournalGraphs and combinatorics
Volume31
Issue number1
DOIs
StatePublished - Jan 2015

Keywords

  • EWI-25556
  • MSC-05C
  • Toughness
  • k-Factor
  • Best monotone degree conditions
  • METIS-312475
  • Connectivity
  • IR-94141
  • Binding number
  • Hamiltonicity

Cite this

Bauer, D., Broersma, H. J., van den Heuvel, J., Kahl, N., Nevo, A., Schmeichel, E., ... Yatauro, M. (2015). Best monotone degree conditions for graph properties: a survey. Graphs and combinatorics, 31(1), 1-22. DOI: 10.1007/s00373-014-1465-6

Bauer, D.; Broersma, Haitze J.; van den Heuvel, J.; Kahl, N.; Nevo, A.; Schmeichel, E.; Woodall, D.R.; Yatauro, M. / Best monotone degree conditions for graph properties: a survey.

In: Graphs and combinatorics, Vol. 31, No. 1, 01.2015, p. 1-22.

Research output: Scientific - peer-reviewArticle

@article{2a99fd98ff5c407f9e9e9b7d7a101f36,
title = "Best monotone degree conditions for graph properties: a survey",
abstract = "We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.",
keywords = "EWI-25556, MSC-05C, Toughness, k-Factor, Best monotone degree conditions, METIS-312475, Connectivity, IR-94141, Binding number, Hamiltonicity",
author = "D. Bauer and Broersma, {Haitze J.} and {van den Heuvel}, J. and N. Kahl and A. Nevo and E. Schmeichel and D.R. Woodall and M. Yatauro",
note = "eemcs-eprint-25556",
year = "2015",
month = "1",
doi = "10.1007/s00373-014-1465-6",
volume = "31",
pages = "1--22",
journal = "Graphs and combinatorics",
issn = "0911-0119",
publisher = "Springer Japan",
number = "1",

}

Bauer, D, Broersma, HJ, van den Heuvel, J, Kahl, N, Nevo, A, Schmeichel, E, Woodall, DR & Yatauro, M 2015, 'Best monotone degree conditions for graph properties: a survey' Graphs and combinatorics, vol 31, no. 1, pp. 1-22. DOI: 10.1007/s00373-014-1465-6

Best monotone degree conditions for graph properties: a survey. / Bauer, D.; Broersma, Haitze J.; van den Heuvel, J.; Kahl, N.; Nevo, A.; Schmeichel, E.; Woodall, D.R.; Yatauro, M.

In: Graphs and combinatorics, Vol. 31, No. 1, 01.2015, p. 1-22.

Research output: Scientific - peer-reviewArticle

TY - JOUR

T1 - Best monotone degree conditions for graph properties: a survey

AU - Bauer,D.

AU - Broersma,Haitze J.

AU - van den Heuvel,J.

AU - Kahl,N.

AU - Nevo,A.

AU - Schmeichel,E.

AU - Woodall,D.R.

AU - Yatauro,M.

N1 - eemcs-eprint-25556

PY - 2015/1

Y1 - 2015/1

N2 - We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.

AB - We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.

KW - EWI-25556

KW - MSC-05C

KW - Toughness

KW - k-Factor

KW - Best monotone degree conditions

KW - METIS-312475

KW - Connectivity

KW - IR-94141

KW - Binding number

KW - Hamiltonicity

U2 - 10.1007/s00373-014-1465-6

DO - 10.1007/s00373-014-1465-6

M3 - Article

VL - 31

SP - 1

EP - 22

JO - Graphs and combinatorics

T2 - Graphs and combinatorics

JF - Graphs and combinatorics

SN - 0911-0119

IS - 1

ER -

Bauer D, Broersma HJ, van den Heuvel J, Kahl N, Nevo A, Schmeichel E et al. Best monotone degree conditions for graph properties: a survey. Graphs and combinatorics. 2015 Jan;31(1):1-22. Available from, DOI: 10.1007/s00373-014-1465-6