TY - JOUR
T1 - Biotechnological applications of Candida antarctica lipase A
T2 - State-of-the-art
AU - Dominguez de Maria, Pablo
AU - Carboni-Oerlemans, Chiara
AU - Tuin, Bernard
AU - Bargeman, Gerrald
AU - van der Meer, Ab
AU - van Gemert, Robert
PY - 2005
Y1 - 2005
N2 - The yeast Candida antarctica produces two different lipases, lipases A and B. While lipase B (CAL-B) is probably the mostly employed hydrolase in the biocatalysis field, the use of the lipase A (CAL-A) has been rather scarce and consequently its tridimensional structure has not been elucidated yet. However, CAL-A is a useful biocatalyst with many different applications that have been described especially in the last few years. Its attractiveness results from its unique features among hydrolases: the high thermostability, allowing operation at T > 90 °C; the ability to accept tertiary and sterically hindered alcohols, which has recently been attributed to the existence of a specific aminoacidic sequence in the active site; the sn-2 recognition in hydrolysis of triglycerides; the selectivity towards trans-fatty acids; the stability in the acidic pH range. Furthermore, it is considered to be an excellent biocatalyst for the asymmetric synthesis of amino acids/amino esters, due to its chemoselectivity towards amine groups. Considering all these aspects, in the present review, the origin, the properties and the applications of the CAL-A are briefly described and discussed, pointing out the unique characteristics of this biocatalyst.
AB - The yeast Candida antarctica produces two different lipases, lipases A and B. While lipase B (CAL-B) is probably the mostly employed hydrolase in the biocatalysis field, the use of the lipase A (CAL-A) has been rather scarce and consequently its tridimensional structure has not been elucidated yet. However, CAL-A is a useful biocatalyst with many different applications that have been described especially in the last few years. Its attractiveness results from its unique features among hydrolases: the high thermostability, allowing operation at T > 90 °C; the ability to accept tertiary and sterically hindered alcohols, which has recently been attributed to the existence of a specific aminoacidic sequence in the active site; the sn-2 recognition in hydrolysis of triglycerides; the selectivity towards trans-fatty acids; the stability in the acidic pH range. Furthermore, it is considered to be an excellent biocatalyst for the asymmetric synthesis of amino acids/amino esters, due to its chemoselectivity towards amine groups. Considering all these aspects, in the present review, the origin, the properties and the applications of the CAL-A are briefly described and discussed, pointing out the unique characteristics of this biocatalyst.
U2 - 10.1016/j.molcatb.2005.09.001
DO - 10.1016/j.molcatb.2005.09.001
M3 - Article
VL - 37
SP - 36
EP - 46
JO - Journal of molecular catalysis. B: Enzymatic
JF - Journal of molecular catalysis. B: Enzymatic
SN - 1381-1177
IS - 1-6
ER -