Breakdown of universality in three-dimensional Dirac semimetals with random impurities

J. P. Santos Pires*, B. Amorim, Aires Ferreira, Inanc Adagideli, Eduardo R. Mucciolo, J. M. Viana Parente Lopes

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
16 Downloads (Pure)


Dirac-Weyl semimetals are unique three-dimensional (3D) phases of matter with gapless electrons and novel electrodynamic properties believed to be robust against weak perturbations. Here, we unveil the crucial influence of the disorder statistics and impurity diversity in the stability of incompressible electrons in 3D semimetals. Focusing on the critical role played by rare impurity configurations, we show that the abundance of low-energy resonances in the presence of diluted random potential wells endows rare localized zero-energy modes with statistical significance, thus lifting the nodal density of states. The strong nonperturbative effect here reported converts the 3D Dirac-Weyl semimetal into a compressible metal even at the lowest impurity densities. Our analytical results are validated by high-resolution real-space simulations in record-large 3D lattices with up to 536 000 000 orbitals.
Original languageEnglish
Article number013183
JournalPhysical Review Research
Issue number1
Publication statusPublished - 25 Feb 2021


Dive into the research topics of 'Breakdown of universality in three-dimensional Dirac semimetals with random impurities'. Together they form a unique fingerprint.

Cite this