Brownian motion of a circle swimmer in a harmonic trap

Soudeh Jahanshahi, Hartmut Löwen, Borge Ten Hagen

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)
98 Downloads (Pure)

Abstract

We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be tested in experiments on artificial and biological microswimmers under dynamical external confinement.

Original languageEnglish
Article number022606
JournalPhysical review E: covering statistical, nonlinear, biological, and soft matter physics
Volume95
Issue number2
DOIs
Publication statusPublished - 17 Feb 2017

Fingerprint

Dive into the research topics of 'Brownian motion of a circle swimmer in a harmonic trap'. Together they form a unique fingerprint.

Cite this