### Abstract

Local charge and spin currents are evaluated from the solutions of fully relativistic quantum mechanical scattering calculations for systems that include temperature-induced lattice and spin disorder as well as intrinsic alloy disorder. This makes it possible to determine material-specific spin transport parameters at finite temperatures. Illustrations are given for a number of important materials and parameters at 300 K. The spin-flip diffusion length lsf of Pt is determined from the exponential decay of a spin current injected into a long length of thermally disordered Pt; we find lsfPt=5.3±0.4nm. For the ferromagnetic substitutional disordered alloy permalloy (Py), we inject currents that are fully polarized parallel and antiparallel to the magnetization and calculate lsf from the exponential decay of their difference; we find lsfPy=2.8±0.1nm. The transport polarization β is found from the asymptotic polarization of a charge current in a long length of Py to be β=0.75±0.01. The spin Hall angle ΘsH is determined from the transverse spin current induced by the passage of a longitudinal charge current in thermally disordered Pt; our best estimate is ΘsHPt=4.5±1% corresponding to the experimental room-temperature bulk resistivity ρ=10.8μΩcm.

Original language | English |
---|---|

Article number | 144409 |

Number of pages | 19 |

Journal | Physical review B: Covering condensed matter and materials physics |

Volume | 99 |

Issue number | 14 |

DOIs | |

Publication status | Published - 11 Apr 2019 |

### Fingerprint

### Cite this

*Physical review B: Covering condensed matter and materials physics*,

*99*(14), [144409]. https://doi.org/10.1103/PhysRevB.99.144409

}

*Physical review B: Covering condensed matter and materials physics*, vol. 99, no. 14, 144409. https://doi.org/10.1103/PhysRevB.99.144409

**Calculating spin transport properties from first principles : Spin currents.** / Wesselink, R.J.H.; Gupta, K.; Yuan, Z.; Kelly, P.J. (Corresponding Author).

Research output: Contribution to journal › Article › Academic › peer-review

TY - JOUR

T1 - Calculating spin transport properties from first principles

T2 - Spin currents

AU - Wesselink, R.J.H.

AU - Gupta, K.

AU - Yuan, Z.

AU - Kelly, P.J.

PY - 2019/4/11

Y1 - 2019/4/11

N2 - Local charge and spin currents are evaluated from the solutions of fully relativistic quantum mechanical scattering calculations for systems that include temperature-induced lattice and spin disorder as well as intrinsic alloy disorder. This makes it possible to determine material-specific spin transport parameters at finite temperatures. Illustrations are given for a number of important materials and parameters at 300 K. The spin-flip diffusion length lsf of Pt is determined from the exponential decay of a spin current injected into a long length of thermally disordered Pt; we find lsfPt=5.3±0.4nm. For the ferromagnetic substitutional disordered alloy permalloy (Py), we inject currents that are fully polarized parallel and antiparallel to the magnetization and calculate lsf from the exponential decay of their difference; we find lsfPy=2.8±0.1nm. The transport polarization β is found from the asymptotic polarization of a charge current in a long length of Py to be β=0.75±0.01. The spin Hall angle ΘsH is determined from the transverse spin current induced by the passage of a longitudinal charge current in thermally disordered Pt; our best estimate is ΘsHPt=4.5±1% corresponding to the experimental room-temperature bulk resistivity ρ=10.8μΩcm.

AB - Local charge and spin currents are evaluated from the solutions of fully relativistic quantum mechanical scattering calculations for systems that include temperature-induced lattice and spin disorder as well as intrinsic alloy disorder. This makes it possible to determine material-specific spin transport parameters at finite temperatures. Illustrations are given for a number of important materials and parameters at 300 K. The spin-flip diffusion length lsf of Pt is determined from the exponential decay of a spin current injected into a long length of thermally disordered Pt; we find lsfPt=5.3±0.4nm. For the ferromagnetic substitutional disordered alloy permalloy (Py), we inject currents that are fully polarized parallel and antiparallel to the magnetization and calculate lsf from the exponential decay of their difference; we find lsfPy=2.8±0.1nm. The transport polarization β is found from the asymptotic polarization of a charge current in a long length of Py to be β=0.75±0.01. The spin Hall angle ΘsH is determined from the transverse spin current induced by the passage of a longitudinal charge current in thermally disordered Pt; our best estimate is ΘsHPt=4.5±1% corresponding to the experimental room-temperature bulk resistivity ρ=10.8μΩcm.

UR - http://www.scopus.com/inward/record.url?scp=85065133626&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.99.144409

DO - 10.1103/PhysRevB.99.144409

M3 - Article

VL - 99

JO - Physical review B: Covering condensed matter and materials physics

JF - Physical review B: Covering condensed matter and materials physics

SN - 2469-9950

IS - 14

M1 - 144409

ER -