Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography

Aastha Arya*, Jorge Martinez-Garcia, Philipp Schuetz, Amirhoushang Mahmoudi, Gerrit Brem, Pim A.J. Donkers, Mina Shahi

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

60 Downloads (Pure)

Abstract

Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.

Original languageEnglish
Article number77
JournalJournal of Nondestructive Evaluation
Volume43
Issue number3
DOIs
Publication statusPublished - Sept 2024

Keywords

  • Micro-X-ray computed tomography
  • Packed bed reactor
  • Potassium carbonate
  • Salt hydrate
  • Thermochemical energy storage
  • Thermochemical material

Fingerprint

Dive into the research topics of 'Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography'. Together they form a unique fingerprint.

Cite this