TY - JOUR
T1 - Citrus orchard mapping in Juybar, Iran
T2 - Analysis of NDVI time series and feature fusion of multi-source satellite imageries
AU - Toosi, Ahmad
AU - Dadrass Javan, F.
AU - Samadzadegan, Farhad
AU - Mehravar, Soroosh
AU - Kurban, Alishir
AU - Azadi, Hossein
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/9
Y1 - 2022/9
N2 - Nowadays crop mapping as an interdisciplinary hot topic attracted both agriculture and remote sensing researchers' interests. This study proposed an automatic method to map citrus orchards in Juybar, Iran, where planting citrus trees is booming there. In this regard, 148 Sentinel-1, Sentinel-2, and ALOS Digital Surface Model (DSM) tiles are processed in Google Earth Engine to provide a hybrid feature set including initial satellite images, Gray Level Co-occurrence Matrix (GLCM) textural features, and spectral features such as vegetation, built-up, bare-soil indices, and the proposed Vegetation Dynamic Index (VDI). A semi-automatic sample selection paradigm is also developed based on a time-series analysis of 12 monthly Normalized Difference Vegetation Indices (NDVIs), Otsu thresholding, multi-level thresholding (MLT), and using two proposed indices called Evergreenness Index (EGI) and Water-covered or No-vegetation (WCNV) index, and finally human post-revision. The output of the Support Vector Machine (SVM) classification using 60,000 samples and the post-classification operation showed that the classified map has an average overall accuracy (OA) and an average kappa coefficient (KC) equal to 99.7% and 0.992, respectively. The results show that multispectral bands lonely extracted orchards with high accuracy (OA: 99.55%, KC: 0.986), and the rest of the features only made a slight improvement to that. For the year 2019, an area of about 4351 ha is estimated as citrus orchards, which is in accordance with the agriculture department's reports (~4700 ha). The results indicate that from 2016 to 2019, despite a “citrus to non-citrus” land-use conversion of about 754 ha, the citrus orchards area was totally expanded by about 17%. Comparing the results with the Google Earth images indicates the precise extraction of orchards with a 10 m spatial resolution. To use the proposed method for extensive cases or areas with other types of evergreen trees, it is recommended to use high-resolution normalized DSMs (nDSMs) and textural features.
AB - Nowadays crop mapping as an interdisciplinary hot topic attracted both agriculture and remote sensing researchers' interests. This study proposed an automatic method to map citrus orchards in Juybar, Iran, where planting citrus trees is booming there. In this regard, 148 Sentinel-1, Sentinel-2, and ALOS Digital Surface Model (DSM) tiles are processed in Google Earth Engine to provide a hybrid feature set including initial satellite images, Gray Level Co-occurrence Matrix (GLCM) textural features, and spectral features such as vegetation, built-up, bare-soil indices, and the proposed Vegetation Dynamic Index (VDI). A semi-automatic sample selection paradigm is also developed based on a time-series analysis of 12 monthly Normalized Difference Vegetation Indices (NDVIs), Otsu thresholding, multi-level thresholding (MLT), and using two proposed indices called Evergreenness Index (EGI) and Water-covered or No-vegetation (WCNV) index, and finally human post-revision. The output of the Support Vector Machine (SVM) classification using 60,000 samples and the post-classification operation showed that the classified map has an average overall accuracy (OA) and an average kappa coefficient (KC) equal to 99.7% and 0.992, respectively. The results show that multispectral bands lonely extracted orchards with high accuracy (OA: 99.55%, KC: 0.986), and the rest of the features only made a slight improvement to that. For the year 2019, an area of about 4351 ha is estimated as citrus orchards, which is in accordance with the agriculture department's reports (~4700 ha). The results indicate that from 2016 to 2019, despite a “citrus to non-citrus” land-use conversion of about 754 ha, the citrus orchards area was totally expanded by about 17%. Comparing the results with the Google Earth images indicates the precise extraction of orchards with a 10 m spatial resolution. To use the proposed method for extensive cases or areas with other types of evergreen trees, it is recommended to use high-resolution normalized DSMs (nDSMs) and textural features.
KW - Change detection
KW - Citrus orchard
KW - Crop mapping
KW - Data fusion
KW - Google Earth Engine
KW - Precision agriculture
KW - UT-Hybrid-D
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-HYBRID
U2 - 10.1016/j.ecoinf.2022.101733
DO - 10.1016/j.ecoinf.2022.101733
M3 - Article
AN - SCOPUS:85134894787
SN - 1574-9541
VL - 70
JO - Ecological informatics
JF - Ecological informatics
M1 - 101733
ER -