Closure of disperse-flow averaged equations models by direct numerical simulation

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review


This paper presents a summary of some recent work on the systematic closure of disperse-flow averaged-equations models on the basis of direct numerical simulations. Since the average pressure is found by solving the equations rather than prescribed as a closure relation, it is important first to identify the pressure part of the average stress. This objective is achieved by examining the transformation properties of the average stress under the gauge transformation
pc + pc +ψ, where PC is the continuous-phase pressure and ~ the potential of the body forces. After this step, the stress is expressed in terms of computable quantities. A strategy to derive closure relations is then described. As an example, it is shown how the effective viscosity for anon-uniform suspension can be obtained. This quantityu is found to be robust in the sense that it takes on the same values for the three specific flows considered. It is also shown that the theological behavior of spatially non-uniform suspensions is described by a non-Newtonian constitutive equation.
Original languageEnglish
Title of host publicationProceedings of the 30th Fluid Dynamics Conference
Subtitle of host publication28 June 1999 - 1 July 1999, Norfolk, VA, U.S.A
Place of PublicationReston, VA
PublisherAIAA Aerospace Sciences
Publication statusPublished - 1999
Event30th AIAA Fluid Dynamics Conference 1999 - Norfolk, United States
Duration: 28 Jun 19991 Jul 1999
Conference number: 30


Conference30th AIAA Fluid Dynamics Conference 1999
Country/TerritoryUnited States


  • NLA


Dive into the research topics of 'Closure of disperse-flow averaged equations models by direct numerical simulation'. Together they form a unique fingerprint.

Cite this