Closure relations for shallow granular flows from particle simulations

Research output: Contribution to journalArticleAcademicpeer-review

73 Citations (Scopus)
11 Downloads (Pure)

Abstract

The discrete particle method (DPM) is used to model granular flows down an inclined chute with varying basal roughness, thickness and inclination. We observe three major regimes: arresting flows, steady uniform flows and accelerating flows. For flows over a smooth base, other (quasi-steady) regimes are observed: for small inclinations the flow can be highly energetic and strongly layered in depth; whereas, for large inclinations it can be non-uniform and oscillating. For steady uniform flows, depth profiles of density, velocity and stress are obtained using an improved coarse-graining method, which provides accurate statistics even at the base of the flow. A shallow-layer model for granular flows is completed with macro-scale closure relations obtained frommicro-scale DPM simulations of steady flows. We obtain functional relations for effective basal friction, velocity shape factor, mean density, and the normal stress anisotropy as functions of layer thickness, flow velocity and basal roughness.
Original languageEnglish
Pages (from-to)531-552
Number of pages22
JournalGranular matter
Volume14
Issue number4
DOIs
Publication statusPublished - Jul 2012

Keywords

  • EWI-22992
  • Depth-averaging
  • Coarse Graining
  • Discrete Particle Method
  • Shallow-layer equations
  • Granular chute flow

Fingerprint Dive into the research topics of 'Closure relations for shallow granular flows from particle simulations'. Together they form a unique fingerprint.

Cite this