Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements

Douwe S. de Bruijn*, Paul M. ter Braak, Dedmer B. van de Waal, Wouter Olthuis, Albert van den Berg

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)
158 Downloads (Pure)

Abstract

Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The coccolithophore Emiliania huxleyi is considered to be globally the most dominant calcifying algal species, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle.

In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a non-invasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified).

We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.
Original languageEnglish
Article number112808
Number of pages7
JournalBiosensors & bioelectronics
Volume173
DOIs
Publication statusPublished - 1 Feb 2021

Keywords

  • Flow cytometry
  • Electrical impedance spectroscopy
  • Single-cell characterization
  • Algae
  • Calcification

Fingerprint

Dive into the research topics of 'Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements'. Together they form a unique fingerprint.

Cite this