Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip

I.R. Peters, Jacobus Hendrikus Snoeijer, Adrian Daerr, Laurent Limat

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)
51 Downloads (Pure)

Abstract

Entrainment in wetting and dewetting flows often occurs through the formation of a corner with a very sharp tip. This corner singularity comes on top of the divergence of viscous stress near the contact line, which is only regularized at molecular scales. We investigate the fine structure of corners appearing at the rear of sliding drops. Experiments reveal a sudden decrease of tip radius, down to 20   μm, before entrainment occurs. We propose a lubrication model for this phenomenon, which compares well to experiments. Despite the disparity of length scales, it turns out that the tip size is set by the classical viscous singularity, for which we deduce a nanometric length from our macroscopic measurements.
Original languageEnglish
Article number114501
Number of pages4
JournalPhysical review letters
Volume103
Issue number1
DOIs
Publication statusPublished - 2009

Keywords

  • METIS-258471
  • IR-73241

Fingerprint Dive into the research topics of 'Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip'. Together they form a unique fingerprint.

  • Cite this