Cofabrication: A Strategy for Building Multicomponent Microsystems

Adam C. Siegel, Sindy K. Y. Tang, Christian A. Nijhuis, Michinao Hashimoto, Scott T. Phillips, Michael D. Dickey, George M. Whitesides*

*Corresponding author for this work

Research output: Contribution to journalReview articleAcademicpeer-review

54 Citations (Scopus)


This Account describes a strategy for fabricating multicomponent microsystems in which the structures of essentially all of the components are formed in a single step of micromolding. This strategy, which we call “cofabrication”, is an alternative to multilayer microfabrication, in which multiple layers of components are sequentially aligned (“registered”) and deposited on a substrate by photolithography.

Cofabrication has several characteristics that make it an especially useful approach for building multicomponent microsystems. It rapidly and inexpensively generates correctly aligned components (for example, wires, heaters, magnetic field generators, optical waveguides, and microfluidic channels) over very large surface areas. By avoiding registration, the technique does not impose on substrates the size limitations of common registrations tools, such as steppers and contact aligners. We have demonstrated multicomponent microsystems with surface areas exceeding 100 cm2, but in principle, device size is only limited by the requirements of generating the original master.

In addition, cofabrication can serve as a low-cost strategy for building microsystems. The technique is amenable to a variety of laboratory settings and uses fabrication tools that are less expensive than those used for multistep microfabrication. Moreover, the process requires only small amounts of solvent and photoresist, a costly chemical required for photolithography; in cofabrication, photoresist is applied and developed only once to produce a master, which is then used to produce multiple copies of molds containing the microfluidic channels.

From a broad perspective, cofabrication represents a new processing paradigm in which the exterior (or shell) of the desired structures are produced before the interior (or core). This approach, generating the insulation or packaging structure first and injecting materials that provide function in channels in liquid phase, makes it possible to design and build microsystems with component materials that cannot be easily manipulated conventionally (such as solid materials with low melting points, liquid metals, liquid crystals, fused salts, foams, emulsions, gases, polymers, biomaterials, and fragile organics). Moreover, materials can be altered, removed, or replaced after the manufacturing stage. For example, cofabrication allows one to build devices in which a liquid flows through the device during use, or is replaced after use. Metal wires can be melted and reset by heating (in principle, repairing a break). This method leads to certain kinds of structures, such as integrated metallic wires with large cross-sectional areas or optical waveguides aligned in the same plane as microfluidic channels, that would be difficult or impossible to make with techniques such as sputter deposition or evaporation.

This Account outlines the strategy of cofabrication and describes several applications. Specifically, we highlight cofabricated systems that combine microfluidics with (i) electrical wires for microheaters, electromagnets, and organic electrodes, (ii) fluidic optical components, such as optical waveguides, lenses, and light sources, (iii) gels for biological cell cultures, and (iv) droplets for compartmentalized chemical reactions, such as protein crystallization.

Original languageEnglish
Pages (from-to)518-528
JournalAccounts of chemical research
Issue number4
Publication statusPublished - Apr 2010
Externally publishedYes


Dive into the research topics of 'Cofabrication: A Strategy for Building Multicomponent Microsystems'. Together they form a unique fingerprint.

Cite this