Colloidal Brazil nut effect in microswimmer mixtures induced by motility contrast

Soudeh Jahanshahi, Celia Lozano, Borge Ten Hagen, Clemens Bechinger, Hartmut Löwen

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
10 Downloads (Pure)

Abstract

We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional to the imposed light intensity, and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-dependent) gravity such that one can define effective "heaviness" of the self-propelled particles. In analogy to shaken granular matter in gravity, we define a "colloidal Brazil nut effect" if the heavier particles are floating on top of the lighter ones. Using extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and explain it based on a generalized Archimedes' principle within the effective equilibrium model: heavy particles are levitated in a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.

Original languageEnglish
Article number114902
JournalThe Journal of chemical physics
Volume150
Issue number11
DOIs
Publication statusPublished - 21 Mar 2019

Keywords

  • n/a OA procedure

Fingerprint

Dive into the research topics of 'Colloidal Brazil nut effect in microswimmer mixtures induced by motility contrast'. Together they form a unique fingerprint.

Cite this