Combining Kohonen maps with Arima time series models to forecast traffic flow

Mascha C. van der Voort, Mark Dougherty, M.S. Dougherty, Susan Watson

Research output: Contribution to journalArticleAcademicpeer-review

580 Citations (Scopus)
1346 Downloads (Pure)


A hybrid method of short-term traffic forecasting is introduced; the KARIMA method. The technique uses a Kohonen self-organizing map as an initial classifier; each class has an individually tuned ARIMA model associated with it. Using a Kohonen map which is hexagonal in layout eases the problem of defining the classes. The explicit separation of the tasks of classification and functional approximation greatly improves forecasting performance compared to either a single ARIMA model or a backpropagation neural network. The model is demonstrated by producing forecasts of traffic flow, at horizons of half an hour and an hour, for a French motorway. Performance is similar to that exhibited by other layered models, but the number of classes needed is much smaller (typically between two and four). Because the number of classes is small, it is concluded that the algorithm could be easily retrained in order to track long-term changes in traffic flow and should also prove to be readily transferrable.
Original languageUndefined
Pages (from-to)307-318
Number of pages12
JournalTransportation research. Part C: Emerging technologies
Issue number5
Publication statusPublished - 1996


  • IR-20473
  • METIS-124034

Cite this