TY - JOUR
T1 - Comparative Analysis of Photocatalytic and Electrochemical Degradation of 4-Ethylphenol in Saline Conditions
AU - Brüninghoff, Robert
AU - Van Duijne, Alyssa K.
AU - Braakhuis, Lucas
AU - Saha, Pradip
AU - Jeremiasse, Adriaan W.
AU - Mei, Bastian
AU - Mul, Guido
N1 - ACS deal
PY - 2019/8/6
Y1 - 2019/8/6
N2 - We evaluated electrochemical degradation (ECD) and photocatalytic degradation (PCD) technologies for saline water purification, with a focus on rate comparison and formation and degradation of chlorinated aromatic intermediates using the same non-chlorinated parent compound, 4-ethylphenol (4EP). At 15 mA·cm-2, and in the absence of chloride (0.6 mol·L-1 NaNO3 was used as supporting electrolyte), ECD resulted in an apparent zero-order rate of 30 μmol L-1·h-1, whereas rates of ∼300 μmol L-1·h-1 and ∼3750 μmol L-1·h-1 were computed for low (0.03 mol·L-1) and high (0.6 mol·L-1) NaCl concentration, respectively. For PCD, initial rates of ∼330 μmol L-1·h-1 and 205 μmol L-1·h-1 were found for low and high NaCl concentrations, at a photocatalyst (TiO2) concentration of 0.5 g·L-1, and illumination at λmax ≈ 375 nm, with an intensity ∼0.32 mW·cm-2. In the chlorine mediated ECD approach, significant quantities of free chlorine (hypochlorite, Cl2) and chlorinated hydrocarbons were formed in solution, while photocatalytic degradation did not show the formation of free chlorine, nor chlorine-containing intermediates, and resulted in better removal of non-purgeable hydrocarbons than ECD. The origin of the minimal formation of free chlorine and chlorinated compounds in photocatalytic degradation is discussed based on photoelectrochemical results and existing literature, and explained by a chloride-mediated surface-charge recombination mechanism.
AB - We evaluated electrochemical degradation (ECD) and photocatalytic degradation (PCD) technologies for saline water purification, with a focus on rate comparison and formation and degradation of chlorinated aromatic intermediates using the same non-chlorinated parent compound, 4-ethylphenol (4EP). At 15 mA·cm-2, and in the absence of chloride (0.6 mol·L-1 NaNO3 was used as supporting electrolyte), ECD resulted in an apparent zero-order rate of 30 μmol L-1·h-1, whereas rates of ∼300 μmol L-1·h-1 and ∼3750 μmol L-1·h-1 were computed for low (0.03 mol·L-1) and high (0.6 mol·L-1) NaCl concentration, respectively. For PCD, initial rates of ∼330 μmol L-1·h-1 and 205 μmol L-1·h-1 were found for low and high NaCl concentrations, at a photocatalyst (TiO2) concentration of 0.5 g·L-1, and illumination at λmax ≈ 375 nm, with an intensity ∼0.32 mW·cm-2. In the chlorine mediated ECD approach, significant quantities of free chlorine (hypochlorite, Cl2) and chlorinated hydrocarbons were formed in solution, while photocatalytic degradation did not show the formation of free chlorine, nor chlorine-containing intermediates, and resulted in better removal of non-purgeable hydrocarbons than ECD. The origin of the minimal formation of free chlorine and chlorinated compounds in photocatalytic degradation is discussed based on photoelectrochemical results and existing literature, and explained by a chloride-mediated surface-charge recombination mechanism.
KW - UT-Hybrid-D
UR - http://www.scopus.com/inward/record.url?scp=85070521242&partnerID=8YFLogxK
U2 - 10.1021/acs.est.9b01244
DO - 10.1021/acs.est.9b01244
M3 - Article
C2 - 31282148
AN - SCOPUS:85070521242
SN - 0013-936X
VL - 53
SP - 8725
EP - 8735
JO - Environmental science & technology
JF - Environmental science & technology
IS - 15
ER -