TY - JOUR
T1 - Comparative evaluation of algorithms for leaf area index estimation from digital hemispherical photography through virtual forests
AU - Liu, Jing
AU - Li, Longhui
AU - Akerblom, Markku
AU - Wang, Tiejun
AU - Skidmore, A.
AU - Zhu, Xi
AU - Heurich, Marco
N1 - Funding Information:
This research was funded by the National Key Research and Development Program of China (2017YFA0603603), the National Natural Science Foundation of China (No: 42001284), the Jiangsu Natural Science Foundation (No: BK20200722), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No: 20KJB420001), and the Horizon 2020 research and innovation programme?European Commission ?BIOSPACE Monitoring Biodiversity from Space? project (grant agreement ID 834709, H2020-EU.1.1). The authors acknowledge the anonymous reviewers and the editor for giving advice on improving the quality of this work. The authors acknowledge the support of the ?Remote Sensing Data Pool Initiative for the Bohemian Forest Ecosystem? data-sharing initiative of the Bavarian Forest National Park.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/23
Y1 - 2021/8/23
N2 - The in situ leaf area index (LAI) measurement plays a vital role in calibrating and validating satellite LAI products. Digital hemispherical photography (DHP) is a widely used in situ forest LAI measurement method. There have been many software programs encompassing a variety of algorithms to estimate LAI from DHP. However, there is no conclusive study for an accuracy comparison among them, due to the difficulty in acquiring forest LAI reference values. In this study, we aim to use virtual (i.e., computer-simulated) broadleaf forests for the accuracy assessment of LAI algorithms in commonly used LAI software programs. Three commonly used DHP programs, including Can_Eye, CIMES, and Hemisfer, were selected since they provide estimates of both effective LAI and true LAI. Individual tree models with and without leaves were first reconstructed based on terrestrial LiDAR point clouds. Various stands were then created from these models. A ray-tracing technique was combined with the virtual forests to model synthetic DHP, for both leaf-on and leaf-off conditions. Afterward, three programs were applied to estimate PAI from leaf-on DHP and the woody area index (WAI) from leaf-off DHP. Finally, by subtracting WAI from PAI, true LAI estimates from 37 different algorithms were achieved for evaluation. The performance of these algorithms was compared with pre-defined LAI and PAI values in the virtual forests. The results demonstrated that without correcting for the vegetation clumping effect, Can_Eye, CIMES, and Hemisfer could estimate effective PAI and effective LAI consistent with each other (R2 > 0.8, RMSD < 0.2). After correcting for the vegetation clumping effect, there was a large inconsistency. In general, Can_Eye more accurately estimated true LAI than CIMES and Hemisfer (with R2 = 0.88 > 0.72, 0.49; RMSE = 0.45 < 0.7, 0.94; nRMSE = 15.7% < 24.21%, 32.81%). There was a systematic underestimation of PAI and LAI using Hemisfer. The most accurate algorithm for estimating LAI was identified as the P57 algorithm in Can_Eye which used the 57.5° gap fraction inversion combined with the finite-length averaging clumping correction. These results demonstrated the inconsistency of LAI estimates from DHP using different algorithms. It highlights the importance and provides a reference for standardizing the algorithm protocol for in situ forest LAI measurement using DHP.
AB - The in situ leaf area index (LAI) measurement plays a vital role in calibrating and validating satellite LAI products. Digital hemispherical photography (DHP) is a widely used in situ forest LAI measurement method. There have been many software programs encompassing a variety of algorithms to estimate LAI from DHP. However, there is no conclusive study for an accuracy comparison among them, due to the difficulty in acquiring forest LAI reference values. In this study, we aim to use virtual (i.e., computer-simulated) broadleaf forests for the accuracy assessment of LAI algorithms in commonly used LAI software programs. Three commonly used DHP programs, including Can_Eye, CIMES, and Hemisfer, were selected since they provide estimates of both effective LAI and true LAI. Individual tree models with and without leaves were first reconstructed based on terrestrial LiDAR point clouds. Various stands were then created from these models. A ray-tracing technique was combined with the virtual forests to model synthetic DHP, for both leaf-on and leaf-off conditions. Afterward, three programs were applied to estimate PAI from leaf-on DHP and the woody area index (WAI) from leaf-off DHP. Finally, by subtracting WAI from PAI, true LAI estimates from 37 different algorithms were achieved for evaluation. The performance of these algorithms was compared with pre-defined LAI and PAI values in the virtual forests. The results demonstrated that without correcting for the vegetation clumping effect, Can_Eye, CIMES, and Hemisfer could estimate effective PAI and effective LAI consistent with each other (R2 > 0.8, RMSD < 0.2). After correcting for the vegetation clumping effect, there was a large inconsistency. In general, Can_Eye more accurately estimated true LAI than CIMES and Hemisfer (with R2 = 0.88 > 0.72, 0.49; RMSE = 0.45 < 0.7, 0.94; nRMSE = 15.7% < 24.21%, 32.81%). There was a systematic underestimation of PAI and LAI using Hemisfer. The most accurate algorithm for estimating LAI was identified as the P57 algorithm in Can_Eye which used the 57.5° gap fraction inversion combined with the finite-length averaging clumping correction. These results demonstrated the inconsistency of LAI estimates from DHP using different algorithms. It highlights the importance and provides a reference for standardizing the algorithm protocol for in situ forest LAI measurement using DHP.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2021/isi/wang_com.pdf
U2 - 10.3390/rs13163325
DO - 10.3390/rs13163325
M3 - Article
SN - 2072-4292
VL - 13
JO - Remote sensing
JF - Remote sensing
IS - 16
M1 - 3325
ER -