Comparing and contrasting size-based particle segregation models: Applying coarse-graining to perfectly bidisperse systems

Deepak R. Tunuguntla*, Thomas Weinhart, Anthony R. Thornton

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    46 Citations (Scopus)
    142 Downloads (Pure)


    Over the last 12 years, numerous new theoretical continuum models have been formulated to predict particle segregation in the size-based bidisperse granular flows over inclined channels. Despite their presence, to our knowledge, no attempts have been made to compare and contrast the fundamental basis upon which these continuum models have been formulated. In this paper, firstly, we aim to illustrate the difference in these models including the incompatible nomenclature which impedes direct comparison. Secondly, we utilise (i) our robust and efficient in-house particle solver MercuryDPM, and (ii) our accurate micro–macro (discrete to continuum) mapping tool called coarse-graining, to compare several proposed models. Through our investigation involving size-bidisperse mixtures, we find that (i) the proposed total partial stress fraction expressions do not match the results obtained from our simulation, and (ii) the kinetic partial stress fraction dominates over the total partial stress fraction and the contact partial stress fraction. However, the proposed theoretical total stress fraction expressions do capture the kinetic partial stress fraction profile, obtained from simulations, very well, thus possibly highlighting the reason why mixture theory segregation models work for inclined channel flows. However, further investigation is required to strengthen the basis upon which the existing mixture theory segregation models are built upon.

    Original languageEnglish
    Pages (from-to)387-405
    Number of pages19
    JournalComputational particle mechanics
    Issue number4
    Publication statusPublished - 1 Oct 2017


    • Coarse-graining
    • Discrete particle simulations
    • Granular media
    • Micro–Macro mapping
    • Mixture theory
    • Particle segregation


    Dive into the research topics of 'Comparing and contrasting size-based particle segregation models: Applying coarse-graining to perfectly bidisperse systems'. Together they form a unique fingerprint.

    Cite this