Compersatory rules for optimal classification with mastery scores.

Hendrik J. Vos

    Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

    Original languageUndefined
    Title of host publicationAdvances in Data Science and Classification
    Place of PublicationHeidelberg
    PublisherSpringer
    Pages211-218
    Number of pages7
    ISBN (Print)3-540-64641-8
    Publication statusPublished - 1998

    Keywords

    • METIS-136163

    Cite this

    Vos, H. J. (1998). Compersatory rules for optimal classification with mastery scores. In Advances in Data Science and Classification (pp. 211-218). Heidelberg: Springer.
    Vos, Hendrik J. / Compersatory rules for optimal classification with mastery scores. Advances in Data Science and Classification. Heidelberg : Springer, 1998. pp. 211-218
    @inbook{6df62b17e4564c96a2b005299be5db19,
    title = "Compersatory rules for optimal classification with mastery scores.",
    keywords = "METIS-136163",
    author = "Vos, {Hendrik J.}",
    year = "1998",
    language = "Undefined",
    isbn = "3-540-64641-8",
    pages = "211--218",
    booktitle = "Advances in Data Science and Classification",
    publisher = "Springer",

    }

    Vos, HJ 1998, Compersatory rules for optimal classification with mastery scores. in Advances in Data Science and Classification. Springer, Heidelberg, pp. 211-218.

    Compersatory rules for optimal classification with mastery scores. / Vos, Hendrik J.

    Advances in Data Science and Classification. Heidelberg : Springer, 1998. p. 211-218.

    Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

    TY - CHAP

    T1 - Compersatory rules for optimal classification with mastery scores.

    AU - Vos, Hendrik J.

    PY - 1998

    Y1 - 1998

    KW - METIS-136163

    M3 - Chapter

    SN - 3-540-64641-8

    SP - 211

    EP - 218

    BT - Advances in Data Science and Classification

    PB - Springer

    CY - Heidelberg

    ER -

    Vos HJ. Compersatory rules for optimal classification with mastery scores. In Advances in Data Science and Classification. Heidelberg: Springer. 1998. p. 211-218