Complexity of Local Search for Euclidean Clustering Problems

Bodo Manthey, Nils Morawietz, Jesse van Rhijn, Frank Sommer

Research output: Working paperPreprintAcademic

100 Downloads (Pure)

Abstract

We show that the simplest local search heuristics for two natural Euclidean clustering problems are PLS-complete. First, we show that the Hartigan--Wong method for $k$-Means clustering is PLS-complete, even when $k = 2$. Second, we show the same result for the Flip heuristic for Max Cut, even when the edge weights are given by the (squared) Euclidean distances between the points in some set $\mathcal{X} \subseteq \mathbb{R}^d$; a problem which is equivalent to Min Sum 2-Clustering.
Original languageEnglish
PublisherArXiv.org
DOIs
Publication statusPublished - 22 Dec 2023

Keywords

  • cs.CC
  • cs.DS

Fingerprint

Dive into the research topics of 'Complexity of Local Search for Euclidean Clustering Problems'. Together they form a unique fingerprint.
  • Complexity of Local Search for Euclidean Clustering Problems

    Manthey, B., Morawietz, N., van Rhijn, J. & Sommer, F., 4 Dec 2024, 35th International Symposium on Algorithms and Computation, ISAAC 2024. Mestre, J. & Wirth, A. (eds.). Dagstuhl, (Leibniz International Proceedings in Informatics, LIPIcs; vol. 322).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    17 Downloads (Pure)

Cite this