Abstract
Oscillating phospholipid-coated ultrasound contrast agent microbubbles display a so-called “compression-only” behavior, where it is observed that the bubbles compress efficiently while their expansion is suppressed. Here, a theoretical understanding of the source of this nonlinear behavior is provided through a weakly nonlinear analysis of the shell buckling model proposed by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499–3505 (2005)]. It is shown that the radial dynamics of the bubble can be considered as a superposition of a linear response at the fundamental driving frequency and a second-order nonlinear low-frequency response that describes the negative offset of the mean bubble radius. The analytical solution deduced from the weakly nonlinear analysis shows that the compression-only behavior results from a rapid change of the shell elasticity with bubble radius. In addition, the radial dynamics of single phospholipid-coated microbubbles was recorded as a function of both the amplitude and the frequency of the driving pressure pulse. The comparison between the experimental data and the theory shows that the magnitude of compression-only behavior is mainly determined by the initial phospholipids concentration on the bubble surface, which slightly varies from bubble to bubble
Original language | English |
---|---|
Pages (from-to) | 1729-1739 |
Number of pages | 11 |
Journal | The Journal of the Acoustical Society of America |
Volume | 129 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- Nonlinear acoustics
- Biomedical ultrasonics
- Bubbles
- Ultrasonic imaging
- 2023 OA procedure