Concomitant pulsatile and continuous flow VAD in biventricular and univentricular physiology: A comparison study with a numerical model

Arianna Di Molfetta*, Gianfranco Ferrari, Roberta Iacobelli, Sergio Filippelli, Paolo Guccione, Libera Fresiello, Gianluigi Perri, Antonio Amodeo

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Introduction: To develop and test a lumped parameter model to simulate and compare the effects of the simultaneous use of continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VADs) to assist biventricular circulation vs. single ventricle circulation in pediatrics. Methods: Baseline data of 5 patients with biventricular circulation eligible for LVAD and of 5 patients with Fontan physiology were retrospectively collected and used to simulate patient baselines. Then, for each patient the following simulations were performed: (a) CF VAD to assist the left ventricle (single ventricle) + a PF VAD to assist the right ventricle (cavo-pulmonary connection) (LCF + RPF); (b) PF VAD to assist the left ventricle (single ventricle) + a CF VAD to assist the right ventricle (cavo-pulmonary connection) (RCF + LPF) Results: In biventricular circulation, the following results were found: cardiac output (17% RCF + LPF, 21% LCF + RPF), artero-ventricular coupling (-36% for the left ventricle and -21.6% for the right ventricle), pulsatility index (+6.4% RCF + LPF, p = 0.02; -8.5% LCF + RPF, p = 0.00009). Right (left) atrial pressure and right (left) ventricular volumes are decreased by the RCF + LPF (by RPF + LCF). Pulmonary arterial pressure decreases in the LCF + RPF configuration. In Fontan physiology: cardiac output (LCF + RPF 35% vs. 8% in RCF + LPF), ventricular preload (+4% RCF + LPF, -10% LCF + RPF), Fontan conduit pressure (-5% RCF + LPF, +7% LCF + RPF), artero-ventricular coupling (-14% RCF + LPF vs. -41% LCF + RPF) and pulsatility (+13% RCF + LPF, - 8% LCF + RPF). Conclusions: A numerical model supports clinicians in defining and innovating the VAD implantation strategy to maximize the hemodynamic benefits. Results suggest that the hemodynamic benefits are maximized by the LCF + RPF configuration.

Original languageEnglish
Pages (from-to)74-81
Number of pages8
JournalThe International journal of artificial organs
Volume40
Issue number2
DOIs
Publication statusPublished - Feb 2017
Externally publishedYes

Keywords

  • BIVAD
  • Fontan
  • Lumped parameter model
  • Pediatrics

Fingerprint

Dive into the research topics of 'Concomitant pulsatile and continuous flow VAD in biventricular and univentricular physiology: A comparison study with a numerical model'. Together they form a unique fingerprint.

Cite this