Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their Catalysis of NO2 Reduction

Anna Pekkari, Zafer Zay, Arturo Susarrey-Arce, Christoph Langhammer, Hanna Härelind, Victor Sebastian*, Kasper Moth-Poulsen*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

48 Citations (Scopus)

Abstract

Faceted colloidal nanoparticles are currently of immense interest due to their unique electronic, optical, and catalytic properties. However, continuous flow synthesis that enables rapid formation of faceted nanoparticles of single or multi-elemental composition is not trivial. We present a continuous flow synthesis route for the synthesis of uniformly sized Pd nanocubes and PdPt core-shell nanoparticles in a single-phase microfluidic reactor, which enables rapid formation of shaped nanoparticles with a reaction time of 3 min. The PdPt core-shell nanoparticles feature a dendritic, high surface area with the Pt shell covering the Pd core, as verified using high-resolution scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The Pd nanocubes and PdPt core-shell particles are catalytically tested during NO2 reduction in the presence of H2 in a flow pocket reactor. The Pd nanocubes exhibited low-temperature activity (i.e., <136 °C) and poor selectivity performance toward production of N2O or N2, whereas PdPt core-shell nanoparticles showed higher activity and were found to achieve better selectivity during NO2 reduction retaining its basic structure at relatively elevated temperatures, making the PdPt core-shell particles a unique, desirable synergic catalyst material for potential use in NOx abatement processes.
Original languageEnglish
Pages (from-to)36196-36204
Number of pages9
JournalACS applied materials & interfaces
Volume39
Issue number11
DOIs
Publication statusPublished - 28 Aug 2019
Externally publishedYes

Keywords

  • flow chemistry
  • microreactor
  • core-shell
  • palladium
  • platinum
  • n/a OA procedure

Fingerprint

Dive into the research topics of 'Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their Catalysis of NO2 Reduction'. Together they form a unique fingerprint.

Cite this