Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop

C. Tampere, S.P. Hoogendoorn, Bart van Arem

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)
8 Downloads (Pure)

Abstract

This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of different traffic-flow modeling approaches and their suitability for exploring traffic-flow patterns in the presence of ADASs, kinetic traffic-flow models are selected because of their good representation on both the aggregate level (congestion dynamics) and the level of the individual vehicle (vehicular interactions either directly or through intervehicle communication). The human-kinetic modeling approach is presented. It is a multiclass variant of kinetic traffic-flow models that is strongly based on individual driver behavior, i.e., on fully continuous acceleration/deceleration behavior and explicit modeling of the activation level of the driver. The strength of this modeling approach is illustrated by application to a driver-assistance system that uses intervehicle communication. It warns drivers when approaching sharp decelerations in a queue tail. The explorative analysis shows that the system results in safer and smoother transition from free-flowing to congested traffic. It also avoids compression of the queue tail, thus preventing the emergence of stop-and-go congestion patterns.
Original languageEnglish
Pages (from-to)649-657
JournalIEEE transactions on intelligent transportation systems
Volume10
Issue number4
DOIs
Publication statusPublished - 2009

Keywords

  • IR-86459
  • METIS-249714

Fingerprint

Dive into the research topics of 'Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop'. Together they form a unique fingerprint.

Cite this