TY - JOUR
T1 - Control of a Pediatric Pulsatile Ventricular Assist Device
T2 - A Hybrid Cardiovascular Model Study
AU - Ferrari, Gianfranco
AU - Di Molfetta, Arianna
AU - Zieliński, Krzysztof
AU - Fresiello, Libera
AU - Górczyńska, Krystyna
AU - Pałko, Krzysztof Jakub
AU - Darowski, Marek
AU - Amodeo, Antonio
AU - Kozarski, Maciej
N1 - Publisher Copyright:
© 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
PY - 2017/12
Y1 - 2017/12
N2 - The aim of this work is to study pediatric pneumatic ventricle (PVAD) performance, versus VAD rate (VADR) and native heart rate (HR) ratio Rr (VADR/HR). The study uses a hybrid model of the cardiovascular system (HCS). HCS consists of a computational part (a lumped parameter model including left and right ventricles, systemic and pulmonary arterial and venous circulation) interfaced to a physical part. This permits the connection of a VAD (15 mL PVAD). Echocardiographic and hemodynamic data of a pediatric patient (average weight 14.3 kg, HR 100 bpm, systemic pressure 75/44 mm Hg, CO 1.5 L/min) assisted apically with asynchronous PVAD were used to set up a basal condition in the model. After model tuning, the assistance was started, setting VAD parameters (ejection and filling pressures, systole duration) to completely fill and empty the PVAD. The study was conducted with constant HR and variable VADR (50-120, step 10, bpm). Experiments were repeated for two additional patients' HRs, 90 and 110 bpm and for two values of systemic arterial resistance (Ras) and Emax. Experimental data were collected and stored on disk. Analyzed data include average left and right ventricular volumes (LVV, RVV), left ventricular flow (LVF), VAD flow (VADF), and total cardiac output (COt). Data were analyzed versus Rr. LVV and RVV are sensitive to Rr and a left ventricular unloading corresponds in general to a right ventricular loading. In the case of asynchronous assistance, frequency beats are always present and the beat rate is equal to the difference between HR and VADR. In the case of pulsatile asynchronous LVAD assistance, VADR should be chosen to minimize frequency beat effects and right ventricular loading and to maximize left ventricular unloading.
AB - The aim of this work is to study pediatric pneumatic ventricle (PVAD) performance, versus VAD rate (VADR) and native heart rate (HR) ratio Rr (VADR/HR). The study uses a hybrid model of the cardiovascular system (HCS). HCS consists of a computational part (a lumped parameter model including left and right ventricles, systemic and pulmonary arterial and venous circulation) interfaced to a physical part. This permits the connection of a VAD (15 mL PVAD). Echocardiographic and hemodynamic data of a pediatric patient (average weight 14.3 kg, HR 100 bpm, systemic pressure 75/44 mm Hg, CO 1.5 L/min) assisted apically with asynchronous PVAD were used to set up a basal condition in the model. After model tuning, the assistance was started, setting VAD parameters (ejection and filling pressures, systole duration) to completely fill and empty the PVAD. The study was conducted with constant HR and variable VADR (50-120, step 10, bpm). Experiments were repeated for two additional patients' HRs, 90 and 110 bpm and for two values of systemic arterial resistance (Ras) and Emax. Experimental data were collected and stored on disk. Analyzed data include average left and right ventricular volumes (LVV, RVV), left ventricular flow (LVF), VAD flow (VADF), and total cardiac output (COt). Data were analyzed versus Rr. LVV and RVV are sensitive to Rr and a left ventricular unloading corresponds in general to a right ventricular loading. In the case of asynchronous assistance, frequency beats are always present and the beat rate is equal to the difference between HR and VADR. In the case of pulsatile asynchronous LVAD assistance, VADR should be chosen to minimize frequency beat effects and right ventricular loading and to maximize left ventricular unloading.
KW - Hybrid cardiovascular model
KW - Hybrid circulatory model
KW - Lumped parameter model
KW - Pulsatile flow ventricular assist device
KW - Variable elastance model
UR - http://www.scopus.com/inward/record.url?scp=85021415104&partnerID=8YFLogxK
U2 - 10.1111/aor.12929
DO - 10.1111/aor.12929
M3 - Article
C2 - 28621816
AN - SCOPUS:85021415104
VL - 41
SP - 1099
EP - 1108
JO - Artificial organs
JF - Artificial organs
SN - 0160-564X
IS - 12
ER -