Controlled light propagation in random, periodic, and superperiodic silicon nanophotonic materials

Manashee Adhikary

Research output: ThesisPhD Thesis - Research UT, graduation UT

239 Downloads (Pure)

Abstract

The goal of this thesis is to steer light deep inside otherwise opaque media. Opaque media are those that strongly interact with light, leading to low transmission and high scattering or reflection. We perform experimental studies on samples that interact with light in different manners. The opaque samples range from randomly distributed nanoparticles that scatter light in all directions to 3D periodically ordered photonic crystals with a forbidden range of light frequencies, a full photonic band gap, and even superperiodic structures, namely 3D arrays of coupled resonating cavities in a 3D band gap. In presence of multiple scattering, the wavefront shaping phase modulation technique is used to focus light behind or inside the medium. We apply this technique to photonic crystals with a forbidden energy gap for light that have intrinsic fabrication disorder that results in multiple scattering. By adding periodically repeated cavities in 3D band gap crystals, we finally present a novel controlled wave transport in superperiodic media, where light hops from cavity to cavity within an otherwise forbidden photonic band gap.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • University of Twente
Supervisors/Advisors
  • Vos, Willem L., Supervisor
  • Uppu, Ravitej, Co-Supervisor
Thesis sponsors
Award date14 Oct 2021
Place of PublicationEnschede
Publisher
Print ISBNs978-90-365-5236-3
Electronic ISBNs978-90-365-5236-3
DOIs
Publication statusPublished - 14 Oct 2021

Fingerprint

Dive into the research topics of 'Controlled light propagation in random, periodic, and superperiodic silicon nanophotonic materials'. Together they form a unique fingerprint.

Cite this