Abstract
Metal–organic framework (MOF) films can be used in various applications. In this work, we propose a method that can be used to synthesize MOF films localized on a single side of an anion exchange membrane, preventing the transport of the metal precursor via Donnan exclusion. This is advantageous compared to the related contra-diffusion method that results in the growth of a MOF film on both sides of the support, differing in quality on both sides. Our proposed method has the advantage that the synthesis conditions can potentially be tuned to create the optimal conditions for crystal growth on a single side. The localized growth of the MOF is governed by Donnan exclusion of the anion exchange membrane, preventing metal ions from passing to the other compartment, and this leads to a local control of the precursor stoichiometry. In this work, we show that our method can localize the growth of both Cu-BTC and ZIF-8 in water and in methanol, respectively, highlighting that this method can used for preparing a variety of MOF films with varying characteristics using soluble precursors at room temperature.
Original language | English |
---|---|
Pages (from-to) | 31703-31708 |
Number of pages | 6 |
Journal | ACS applied materials & interfaces |
Volume | 16 |
Issue number | 24 |
Early online date | 10 Jun 2024 |
DOIs | |
Publication status | Published - 19 Jun 2024 |
Keywords
- UT-Hybrid-D