Abstract
We present a theoretical concept which may lead to quantitative photoacoustic mapping of chromophore concentrations. The approach supposes a technique capable of tagging light in a well-defined tagging volume at a specific location deep in the medium. We derive a formula that expresses the local absorption coefficient inside a medium in terms of noninvasively measured quantities and experimental parameters and we validate the theory using Monte Carlo simulations. Furthermore, we performed an experiment to basically validate the concept as a strategy to correct for fluence variations in photoacoustics. In the experiment we exploit the possibility of acousto-optic modulation, using focused ultrasound, to tag photons. Results show that the variation in photoacoustic signals of absorbing insertions embedded at different depths in a phantom, caused by fluence variations of more than one order of magnitude, can be corrected for to an accuracy of 5%
Original language | English |
---|---|
Pages (from-to) | 14117-14129 |
Number of pages | 13 |
Journal | Optics express |
Volume | 20 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2012 |