Abstract
Three-dimensional topological insulators (3DTIs) host conducting surface states, while the bulk remains insulating. These surface states are spin-momentum locked, which opens the road to spintronic applications. We investigate the hyperfine interaction between spin-momentum locked electrons and nuclear spins. A DC source-drain bias implies a nonzero electron spin polarization, which is transfered to a nonzero nuclear spin polarization via spin-flip interactions. Inversely, thermal relaxation of a nonzero nuclear spin polarization drives a charge current. This shows as an inductive current, observable at timescales comparable to the nuclear spin-flip rate. At DC timescales, the nonzero nuclear polarization is expected to affect resistance as a function of applied bias. Moreover, the additional in-plane magnetic field stemming from nuclear polarization is expected to affect phase coherence lengths.
We search for signatures of current-induced nuclear polarization in the 3DTI (Bi 1-x Sb x)2 Te 3 (BST). The high nuclear spin abundancy makes this an excellent candidate material. BST thin-films are deposited by molecular beam epitaxy, which allows for tuning the position of Fermi level and Dirac point within the bulk band gap. The experiments focus on probing effects of non-zero nuclear polarization using DC signals. However, careful consideration is required to distinguish signatures of other effects, such as electron-electron interactions and Joule heating.
We search for signatures of current-induced nuclear polarization in the 3DTI (Bi 1-x Sb x)2 Te 3 (BST). The high nuclear spin abundancy makes this an excellent candidate material. BST thin-films are deposited by molecular beam epitaxy, which allows for tuning the position of Fermi level and Dirac point within the bulk band gap. The experiments focus on probing effects of non-zero nuclear polarization using DC signals. However, careful consideration is required to distinguish signatures of other effects, such as electron-electron interactions and Joule heating.
Original language | English |
---|---|
Publication status | Published - 23 Jan 2024 |
Event | NWO Physics 2024 - Koningshof, Veldhoven, Netherlands Duration: 23 Jan 2024 → 24 Jan 2024 |
Conference
Conference | NWO Physics 2024 |
---|---|
Country/Territory | Netherlands |
City | Veldhoven |
Period | 23/01/24 → 24/01/24 |