TY - UNPB
T1 - Dash Sylvereye
T2 - A WebGL-powered Library for Dashboard-driven Visualization of Large Street Networks
AU - Garcia-Robledo, Alberto
AU - Zangiabady, Mahboobeh
N1 - Re-submitted to IEEE Access on Aug. 11, 2023. The interpretation of the results in Section V has been corrected, as a more in-depth analysis unveiled that the prior results are attributed to the software (CPU) acceleration capabilities of Dash Sylvereye. Additionally, the manuscript now features a performance comparison with Kepler.gl and city-roads
PY - 2021/5/29
Y1 - 2021/5/29
N2 - State-of-the-art open network visualization tools like Gephi, KeyLines, and Cytoscape are not suitable for studying street networks with thousands of roads since they do not support simultaneously polylines for edges, navigable maps, GPU-accelerated rendering, interactivity, and the means for visualizing multivariate data. To fill this gap, the present paper presents Dash Sylvereye: a new Python library to produce interactive visualizations of primal street networks on top of tiled web maps. Thanks to its integration with the Dash framework, Dash Sylvereye can be used to develop web dashboards around temporal and multivariate street data by coordinating the various elements of a Dash Sylvereye visualization with other plotting and UI components provided by the Dash framework. Additionally, Dash Sylvereye provides convenient functions to easily import OpenStreetMap street topologies obtained with the OSMnx library. Moreover, Dash Sylvereye uses WebGL for GPU-accelerated rendering when redrawing the road network. We conduct experiments to assess the performance of Dash Sylvereye on a commodity computer when exploiting software acceleration in terms of frames per second, CPU time, and frame duration. We show that Dash Sylvereye can offer fast panning speeds, close to 60 FPS, and CPU times below 20 ms, for street networks with thousands of edges, and above 24 FPS, and CPU times below 40 ms, for networks with dozens of thousands of edges. Additionally, we conduct a performance comparison against two state-of-the-art street visualization tools. We found Dash Sylvereye to be competitive when compared to the state-of-the-art visualization libraries Kepler.gl and city-roads. Finally, we describe a web dashboard application that exploits Dash Sylvereye for the analysis of a SUMO vehicle traffic simulation.
AB - State-of-the-art open network visualization tools like Gephi, KeyLines, and Cytoscape are not suitable for studying street networks with thousands of roads since they do not support simultaneously polylines for edges, navigable maps, GPU-accelerated rendering, interactivity, and the means for visualizing multivariate data. To fill this gap, the present paper presents Dash Sylvereye: a new Python library to produce interactive visualizations of primal street networks on top of tiled web maps. Thanks to its integration with the Dash framework, Dash Sylvereye can be used to develop web dashboards around temporal and multivariate street data by coordinating the various elements of a Dash Sylvereye visualization with other plotting and UI components provided by the Dash framework. Additionally, Dash Sylvereye provides convenient functions to easily import OpenStreetMap street topologies obtained with the OSMnx library. Moreover, Dash Sylvereye uses WebGL for GPU-accelerated rendering when redrawing the road network. We conduct experiments to assess the performance of Dash Sylvereye on a commodity computer when exploiting software acceleration in terms of frames per second, CPU time, and frame duration. We show that Dash Sylvereye can offer fast panning speeds, close to 60 FPS, and CPU times below 20 ms, for street networks with thousands of edges, and above 24 FPS, and CPU times below 40 ms, for networks with dozens of thousands of edges. Additionally, we conduct a performance comparison against two state-of-the-art street visualization tools. We found Dash Sylvereye to be competitive when compared to the state-of-the-art visualization libraries Kepler.gl and city-roads. Finally, we describe a web dashboard application that exploits Dash Sylvereye for the analysis of a SUMO vehicle traffic simulation.
KW - cs.HC
KW - H.5.3
U2 - 10.48550/arXiv.2105.14362
DO - 10.48550/arXiv.2105.14362
M3 - Preprint
BT - Dash Sylvereye
PB - ArXiv.org
ER -