TY - JOUR
T1 - Data‐Driven Stochastic Lie Transport Modeling of the 2D Euler Equations
AU - Ephrati, Sagy R.
AU - Cifani, Paolo
AU - Luesink, Erwin
AU - Geurts, Bernard J.
N1 - Funding Information:
The authors would like to thank the associate editor and the two anonymous referees for their valuable input and suggestions that have helped to improve the paper. In addition, the authors would like to thank Wei Pan, at the Department of Mathematics, Imperial College London, for his help preparing the numerical experiments. We are grateful to thank Darryl Holm and James‐Michael Leahy, at the Department of Mathematics, Imperial College London, and Arnout Franken, at the University of Twente, for the many inspiring discussions we had in the context of the SPRESTO project, funded by the Dutch Science Foundation (NWO) in their TOP1 program.
Publisher Copyright:
© 2023 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
PY - 2023/1/6
Y1 - 2023/1/6
N2 - In this paper, we propose and assess several stochastic parametrizations for data-driven modeling of the two-dimensional Euler equations using coarse-grid SPDEs. The framework of Stochastic Advection by Lie Transport (SALT) (Cotter et al., 2019, https://doi.org/10.1137/18m1167929) is employed to define a stochastic forcing that is decomposed in terms of a deterministic basis (empirical orthogonal functions, EOFs) multiplied by temporal traces, here regarded as stochastic processes. The EOFs are obtained from a fine-grid data set and are defined in conjunction with corresponding deterministic time series. We construct stochastic processes that mimic properties of the measured time series. In particular, the processes are defined such that the underlying probability density functions (pdfs) or the estimated correlation time of the time series are retained. These stochastic models are compared to stochastic forcing based on Gaussian noise, which does not use any information of the time series. We perform uncertainty quantification tests and compare stochastic ensembles in terms of mean and spread. Reduced uncertainty is observed for the developed models. On short timescales, such as those used for data assimilation (Cotter et al., 2020a, https://doi.org/10.1007/s10955-020-02524-0), the stochastic models show a reduced ensemble mean error and a reduced spread. Particularly, using estimated pdfs yields stochastic ensembles which rarely fail to capture the reference solution on small time scales, whereas introducing correlation into the stochastic models improves the quality of the coarse-grid predictions with respect to Gaussian noise.
AB - In this paper, we propose and assess several stochastic parametrizations for data-driven modeling of the two-dimensional Euler equations using coarse-grid SPDEs. The framework of Stochastic Advection by Lie Transport (SALT) (Cotter et al., 2019, https://doi.org/10.1137/18m1167929) is employed to define a stochastic forcing that is decomposed in terms of a deterministic basis (empirical orthogonal functions, EOFs) multiplied by temporal traces, here regarded as stochastic processes. The EOFs are obtained from a fine-grid data set and are defined in conjunction with corresponding deterministic time series. We construct stochastic processes that mimic properties of the measured time series. In particular, the processes are defined such that the underlying probability density functions (pdfs) or the estimated correlation time of the time series are retained. These stochastic models are compared to stochastic forcing based on Gaussian noise, which does not use any information of the time series. We perform uncertainty quantification tests and compare stochastic ensembles in terms of mean and spread. Reduced uncertainty is observed for the developed models. On short timescales, such as those used for data assimilation (Cotter et al., 2020a, https://doi.org/10.1007/s10955-020-02524-0), the stochastic models show a reduced ensemble mean error and a reduced spread. Particularly, using estimated pdfs yields stochastic ensembles which rarely fail to capture the reference solution on small time scales, whereas introducing correlation into the stochastic models improves the quality of the coarse-grid predictions with respect to Gaussian noise.
UR - https://doi.org/10.1029/2022MS003268
U2 - 10.1029/2022MS003268
DO - 10.1029/2022MS003268
M3 - Article
VL - 15
JO - Journal of Advances in Modeling Earth Systems
JF - Journal of Advances in Modeling Earth Systems
SN - 1942-2466
IS - 1
M1 - e2022MS003268
ER -