Deep convolutional neural networks for surface coal mines determination from sentinel-2 images

L. Madhuanand* (Corresponding Author), P. Sadavarte, A.J.H. Visschedijk, H.A.C. Denier van der Gon, I. Aben, F.B. Osei

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)
532 Downloads (Pure)

Abstract

Coal is a principal source of energy and the combustion of coal supplies around one-third of the global electricity generation. Coal mines are also an important source of CH4 emissions, the second most important greenhouse gas. Monitoring CH4 emissions caused by coal mining using earth observation will require the exact location of coal mines. This paper aims to determine surface coal mines from satellite images through deep learning techniques by treating them as a land use/land cover classification task. This is achieved using Convolutional Neural Networks (CNN) that has proven to be capable of complex land use/land cover classification tasks. With a list of known coal mine locations from various countries, a training dataset of “Coal Mine” and “No Coal Mine” image patches is prepared using Sentinel-2 satellite images with 13 spectral bands. Various pre-trained CNN network architectures (VGG, ResNet, DenseNet) are trained and validated with our prepared coal mine dataset of 3500 “Coal Mine” and 3000 “No Coal Mine” image patches. After several experiments with the VGG network combined with transfer learning is found to be an optimal model for this task. Classification accuracy of 98% has been achieved for the validation dataset of the pre-trained VGG architecture. The model produces more than 95% overall accuracy when tested on unseen satellite images from different countries outside the training dataset and evaluated against visual classification.
Original languageEnglish
Pages (from-to)296-309
Number of pages14
JournalEuropean Journal of Remote Sensing
Volume54
Issue number1
Early online date10 May 2021
DOIs
Publication statusPublished - 2021

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-GOLD

Fingerprint

Dive into the research topics of 'Deep convolutional neural networks for surface coal mines determination from sentinel-2 images'. Together they form a unique fingerprint.

Cite this