TY - JOUR
T1 - Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions
AU - van den Noort, F.
AU - van der Vaart , C.H.
AU - Bellos-Grob, A.T.M.
AU - van de Waarsenburg, M.K.
AU - Slump, C.H.
AU - van Stralen, Marijn
N1 - Wiley deal
Funding Information:
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. This work is part of the research program Gynius with project number 15301, which is financed by The Netherlands Organisation for Scientific Research (NWO).
Publisher Copyright:
© 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.
PY - 2019/8
Y1 - 2019/8
N2 - Objectives: To measure the length, width and area of the urogenital hiatus (UH), and the length and mean echogenicity (MEP) of the puborectalis muscle (PRM), automatically and observer-independently, in the plane of minimal hiatal dimensions on transperineal ultrasound (TPUS) images, by automatic segmentation of the UH and the PRM using deep learning. Methods: In 1318 three- and four-dimensional (3D/4D) TPUS volume datasets from 253 nulliparae at 12 and 36 weeks' gestation, two-dimensional (2D) images in the plane of minimal hiatal dimensions with the PRM at rest, on maximum contraction and on maximum Valsalva maneuver, were obtained manually and the UH and PRM were segmented manually. In total, 713 of the images were used to train a convolutional neural network (CNN) to segment automatically the UH and PRM in the plane of minimal hiatal dimensions. In the remainder of the dataset (test set 1 (TS1); 601 images, four having been excluded), the performance of the CNN was evaluated by comparing automatic and manual segmentations. The performance of the CNN was also tested on 117 images from an independent dataset (test set 2 (TS2); two images having been excluded) from 40 nulliparae at 12 weeks' gestation, which were acquired and segmented manually by a different observer. The success of automatic segmentation was assessed visually. Based on the CNN segmentations, the following clinically relevant parameters were measured: the length, width and area of the UH, the length of the PRM and MEP. The overlap (Dice similarity index (DSI)) and surface distance (mean absolute distance (MAD) and Hausdorff distance (HDD)) between manual and CNN segmentations were measured to investigate their similarity. For the measured clinically relevant parameters, the intraclass correlation coefficients (ICCs) between manual and CNN results were determined. Results: Fully automatic CNN segmentation was successful in 99.0% and 93.2% of images in TS1 and TS2, respectively. DSI, MAD and HDD showed good overlap and distance between manual and CNN segmentations in both test sets. This was reflected in the respective ICC values in TS1 and TS2 for the length (0.96 and 0.95), width (0.77 and 0.87) and area (0.96 and 0.91) of the UH, the length of the PRM (0.87 and 0.73) and MEP (0.95 and 0.97), which showed good to very good agreement. Conclusion: Deep learning can be used to segment automatically and reliably the PRM and UH on 2D ultrasound images of the nulliparous pelvic floor in the plane of minimal hiatal dimensions. These segmentations can be used to measure reliably UH dimensions as well as PRM length and MEP.
AB - Objectives: To measure the length, width and area of the urogenital hiatus (UH), and the length and mean echogenicity (MEP) of the puborectalis muscle (PRM), automatically and observer-independently, in the plane of minimal hiatal dimensions on transperineal ultrasound (TPUS) images, by automatic segmentation of the UH and the PRM using deep learning. Methods: In 1318 three- and four-dimensional (3D/4D) TPUS volume datasets from 253 nulliparae at 12 and 36 weeks' gestation, two-dimensional (2D) images in the plane of minimal hiatal dimensions with the PRM at rest, on maximum contraction and on maximum Valsalva maneuver, were obtained manually and the UH and PRM were segmented manually. In total, 713 of the images were used to train a convolutional neural network (CNN) to segment automatically the UH and PRM in the plane of minimal hiatal dimensions. In the remainder of the dataset (test set 1 (TS1); 601 images, four having been excluded), the performance of the CNN was evaluated by comparing automatic and manual segmentations. The performance of the CNN was also tested on 117 images from an independent dataset (test set 2 (TS2); two images having been excluded) from 40 nulliparae at 12 weeks' gestation, which were acquired and segmented manually by a different observer. The success of automatic segmentation was assessed visually. Based on the CNN segmentations, the following clinically relevant parameters were measured: the length, width and area of the UH, the length of the PRM and MEP. The overlap (Dice similarity index (DSI)) and surface distance (mean absolute distance (MAD) and Hausdorff distance (HDD)) between manual and CNN segmentations were measured to investigate their similarity. For the measured clinically relevant parameters, the intraclass correlation coefficients (ICCs) between manual and CNN results were determined. Results: Fully automatic CNN segmentation was successful in 99.0% and 93.2% of images in TS1 and TS2, respectively. DSI, MAD and HDD showed good overlap and distance between manual and CNN segmentations in both test sets. This was reflected in the respective ICC values in TS1 and TS2 for the length (0.96 and 0.95), width (0.77 and 0.87) and area (0.96 and 0.91) of the UH, the length of the PRM (0.87 and 0.73) and MEP (0.95 and 0.97), which showed good to very good agreement. Conclusion: Deep learning can be used to segment automatically and reliably the PRM and UH on 2D ultrasound images of the nulliparous pelvic floor in the plane of minimal hiatal dimensions. These segmentations can be used to measure reliably UH dimensions as well as PRM length and MEP.
KW - UT-Hybrid-D
KW - Convolutional Neural Network (CNN)
KW - Deep learning
KW - Puborectalis muscle
KW - Segmentation
KW - Transperineal ultrasound
KW - Urogenital hiatus
UR - http://www.scopus.com/inward/record.url?scp=85068226749&partnerID=8YFLogxK
U2 - 10.1002/uog.20181
DO - 10.1002/uog.20181
M3 - Article
C2 - 30461079
SN - 0960-7692
VL - 54
SP - 270
EP - 275
JO - Ultrasound in obstetrics & gynecology
JF - Ultrasound in obstetrics & gynecology
IS - 2
ER -