### Abstract

Original language | English |
---|---|

Place of Publication | Enschede |

Publisher | University of Twente, Department of Applied Mathematics |

Publication status | Published - 2002 |

### Publication series

Name | Memorandum |
---|---|

Publisher | Department of Applied Mathematics, University of Twente |

No. | 1617 |

ISSN (Print) | 0169-2690 |

### Fingerprint

### Keywords

- MSC-58F07
- MSC-58F37
- IR-65804
- MSC-58H15
- EWI-3437
- MSC-58G37

### Cite this

*Deformation and recursion for the $N = 2 \; \alpha = 1$ supersymmetric KdV hierarchy*. (Memorandum; No. 1617). Enschede: University of Twente, Department of Applied Mathematics.

}

*Deformation and recursion for the $N = 2 \; \alpha = 1$ supersymmetric KdV hierarchy*. Memorandum, no. 1617, University of Twente, Department of Applied Mathematics, Enschede.

**Deformation and recursion for the $N = 2 \; \alpha = 1$ supersymmetric KdV hierarchy.** / Sorin, A.S.; Kersten, P.H.M.

Research output: Book/Report › Report › Other research output

TY - BOOK

T1 - Deformation and recursion for the $N = 2 \; \alpha = 1$ supersymmetric KdV hierarchy

AU - Sorin, A.S.

AU - Kersten, P.H.M.

PY - 2002

Y1 - 2002

N2 - A detailed description is given for the construction of the deformation of the $N=2$ supersymmetric $\alpha=1$ KdV-equation, leading to the recursion operator for symmetries and the zero-th Hamiltonian structure; the solution to a longstanding problem.

AB - A detailed description is given for the construction of the deformation of the $N=2$ supersymmetric $\alpha=1$ KdV-equation, leading to the recursion operator for symmetries and the zero-th Hamiltonian structure; the solution to a longstanding problem.

KW - MSC-58F07

KW - MSC-58F37

KW - IR-65804

KW - MSC-58H15

KW - EWI-3437

KW - MSC-58G37

M3 - Report

T3 - Memorandum

BT - Deformation and recursion for the $N = 2 \; \alpha = 1$ supersymmetric KdV hierarchy

PB - University of Twente, Department of Applied Mathematics

CY - Enschede

ER -