Dependence of nociceptive detection thresholds on physiological parameters and capsaicin-induced neuroplasticity: a computational study

    Research output: Contribution to journalArticleAcademicpeer-review

    2 Citations (Scopus)
    86 Downloads (Pure)

    Abstract

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month.
    Original languageEnglish
    Pages (from-to)12
    Number of pages12
    JournalFrontiers in computational neuroscience
    Volume10
    Issue number49
    DOIs
    Publication statusPublished - 25 May 2016

    Keywords

    • Detection threshold
    • Neuroplasticity
    • Capsaicin
    • Computational modeling
    • Nociceptive detection

    Fingerprint

    Dive into the research topics of 'Dependence of nociceptive detection thresholds on physiological parameters and capsaicin-induced neuroplasticity: a computational study'. Together they form a unique fingerprint.

    Cite this