Depth-Resolved Modelling of Intra-Swash Morphodynamics Induced by Solitary Waves

Joost W.M. Kranenborg*, Geert H.P. Campmans, Niels G. Jacobsen, Jebbe J. van der Werf, Ad J.H.M. Reniers, Suzanne J.M.H. Hulscher

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Downloads (Pure)

Abstract

We present a fully coupled 2DV morphodynamic model, implemented in OpenFOAM® that is capable of simulating swash-zone morphodynamics of sandy beaches. The hydrodynamics are described by the Reynolds-averaged Navier–Stokes (RANS) equations with a k−ω turbulence model and the Volume of Fluid (VoF) approach for discriminating between air and water. Sediment transport is described in terms of bedload and suspended load transport. We show that the default divergence scheme in OpenFOAM can become numerically unstable and lead to negative sediment concentrations, and propose a solution to avoid this problem. The model performance is assessed in terms of surface elevation, flow velocities, runup, suspended sediment concentrations, bed profile evolution and sediment transport volumes by comparing with measurements of field-scale (wave height of 0.6 m) solitary waves. The model shows reasonable agreement in terms of hydrodynamics and predicts the correct sediment transport volumes, although the deposition is predicted more onshore compared to the measurements. This is partially attributed to an overprediction of the runup. The model shows that the suspended sediment concentration displays a strong vertical dependence. These results show the potential of depth-resolving models in providing more insight into morphodynamic processes in the swash zone, particularly with respect to vertical structures in the flow and suspended sediment transport.
Original languageEnglish
Article number1175
Pages (from-to)1-23
Number of pages23
JournalJournal of marine science and engineering
Volume10
Issue number9
Early online date24 Aug 2022
DOIs
Publication statusPublished - Sep 2022

Keywords

  • swash zone
  • sediment transport
  • morphodynamical modelling
  • depth-resolving model
  • intra-swash
  • solitary wave

Fingerprint

Dive into the research topics of 'Depth-Resolved Modelling of Intra-Swash Morphodynamics Induced by Solitary Waves'. Together they form a unique fingerprint.

Cite this