Design and Control of the MINDWALKER Exoskeleton

Shiqian Wang, Letian Wang, C. Meijneke, Edwin H.F. van Asseldonk, T. Hoellinger, G. Cheron, Y. Ivanenko, V. La Scaleia, F. Sylos-Labini, M. Molinari, F. Tamburella, I. Pisotta, F. Thorsteinsson, M. Ilzkovitz, J. Gancet, Y. Nevatia, R. Hauffe, F. Zanow, Herman van der Kooij

Research output: Contribution to journalArticleAcademicpeer-review

224 Citations (Scopus)
9 Downloads (Pure)


Powered exoskeletons can empower paraplegics to stand and walk. Actively controlled hip ab/adduction (HAA) is needed for weight shift and for lateral foot placement to support dynamic balance control and to counteract disturbances in the frontal plane. Here, we describe the design, control, and preliminary evaluation of a novel exoskeleton, MINDWALKER. Besides powered hip flexion/extension and knee flexion/extension, it also has powered HAA. Each of the powered joints has a series elastic actuator, which can deliver 100 Nm torque and 1 kW power. A finite-state machine based controller provides gait assistance in both the sagittal and frontal planes. State transitions, such as stepping, can be triggered by the displacement of the Center of Mass (CoM). A novel step-width adaptation algorithm was proposed to stabilize lateral balance. We tested this exoskeleton on both healthy subjects and paraplegics. Experimental results showed that all users could successfully trigger steps by CoM displacement. The step-width adaptation algorithm could actively counteract disturbances, such as pushes. With the current implementations, stable walking without crutches has been achieved for healthy subjects but not yet for SCI paraplegics. More research and development is needed to improve the gait stability
Original languageEnglish
Pages (from-to)277-286
Number of pages10
JournalIEEE transactions on neural systems and rehabilitation engineering
Issue number2
Publication statusPublished - 2015


  • IR-98266
  • METIS-310704


Dive into the research topics of 'Design and Control of the MINDWALKER Exoskeleton'. Together they form a unique fingerprint.

Cite this