Design for additive manufacturing: Framework and methodology

Tom Vaneker*, Alain Bernard, Giovanni Moroni, Ian Gibson, Yicha Zhang

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

200 Citations (Scopus)
1625 Downloads (Pure)

Abstract

In recent decades additive manufacturing (AM) has evolved from a prototyping to a production technology. It is used to produce end-use-parts for medical, aerospace, automotive and other industrial applications from small series up to 100,000 of commercially successful products. Metal additive manufacturing processes are relatively slow, require complex preparation and post-processing treatment while using expensive machinery, resulting in high production costs per product. Design for Additive Manufacturing (DfAM) aims at optimizing the product design to deal with the complexity of the production processes, while also defining decisive benefits of the AM based product in the usage stages of its life cycle. Recent investigations have shown that the lack of knowledge on DfAM tools and techniques are seen as one of the barriers for the further implementation of AM. This paper presents a framework for DfAM methods and tools, subdivided into three distinct stages of product development: AM process selection, product redesign for functionality enhancement, and product optimization for the AM process chosen. It will illustrate the applicability of the design framework using examples from both research and industry.

Original languageEnglish
Pages (from-to)578-599
Number of pages22
JournalCIRP Annals
Volume69
Issue number2
Early online date6 Aug 2020
DOIs
Publication statusPublished - 2020

Keywords

  • Additive manufacturing
  • Design
  • DfAM
  • 22/2 OA procedure

Fingerprint

Dive into the research topics of 'Design for additive manufacturing: Framework and methodology'. Together they form a unique fingerprint.

Cite this