Design of a ring resonator-based optical beam forming network for phased array receive antennas

J.W.J.R. van 't Klooster, C.G.H. Roeloffzen, Arjan Meijerink, L. Zhuang, D.A.I. Marpaung, Wim van Etten, Rene Heideman, Arne Leinse, H. Schippers, J. Verpoorte, M. Wintels

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    141 Downloads (Pure)

    Abstract

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our goal is to deliver large bandwidth Ku-band connectivity between antennas, mount conformal to the airplane fuselage and on a geostationary satellite, respectively.This way it would be possible to bring live DVB-S television to airplane passengers. In this paper, we present recent research conducted on a 4 × 1 ring resonator-based OBFN test set-up. This OBFN has four optical input ports and one optical output port. It is tuned to provide the desired signal combination with optimal constructive interference between the modulated input signals from the PAA. Therefore, combining circuitry and delay elements are required. The OBFN is tuned by electrically heating tunable true time delay (TTD) elements. These are built using optical ring resonators (ORRs). By cascading multiple ORRs with different resonance frequencies, it is possible to create a TTD with a large bandwidth. Optical beam forming is used because it provides advantages over traditional beam forming methods. These advantages are: large bandwidth, EMI resistance, and, when integrated onto a single chip, compactness and low costs. The OBFN is created using planar optical waveguide technology and consists of the following building blocks: waveguides, Mach-Zehnder interferometers, (MZIs) couplers and ORRs. The tuning of the OBFN is done by an electronic control system using a microcontroller. Communication with a PC is possible using USB. To our knowledge, this is the first integrated ORR-based OBFN circuit for PAA satellite reception.
    Original languageUndefined
    Title of host publication30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions, ESA/ESTEC
    Place of PublicationNoordwijk, The Netherlands
    PublisherESA
    Pages403-406
    Number of pages4
    ISBN (Print)not assigned
    Publication statusPublished - 27 May 2008
    Event30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions 2008 - Noordwijk, Netherlands
    Duration: 27 May 200830 May 2008
    Conference number: 30

    Publication series

    Name
    PublisherESA
    NumberSupplement

    Workshop

    Workshop30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions 2008
    Country/TerritoryNetherlands
    CityNoordwijk
    Period27/05/0830/05/08

    Keywords

    • EWI-13517
    • IR-65008
    • METIS-251202

    Cite this