Design of an end-effector for robot-assisted ultrasound-guided breast biopsies

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
28 Downloads (Pure)

Abstract

Purpose: The biopsy procedure is an important phase in breast cancer diagnosis. Accurate breast imaging and precise needle placement are crucial in lesion targeting. This paper presents an end-effector (EE) for robotic 3D ultrasound (US) breast acquisitions and US-guided breast biopsies. The EE mechanically guides the needle to a specified target within the US plane. The needle is controlled in all degrees of freedom (DOFs) except for the direction of insertion, which is controlled by the radiologist. It determines the correct needle depth and stops the needle accordingly. Method: In the envisioned procedure, a robotic arm performs localization of the breast, 3D US volume acquisition and reconstruction, target identification and needle guidance. Therefore, the EE is equipped with a stereo camera setup, a picobeamer, US probe holder, a three-DOF needle guide and a needle stop. The design was realized by prototyping techniques. Experiments were performed to determine needle placement accuracy in-air. The EE was placed on a seven-DOF robotic manipulator to determine the biopsy accuracy on a cuboid phantom. Results: Needle placement accuracy was 0.3 ± 1.5 mm in and 0.1 ± 0.36 mm out of the US plane. Needle depth was regulated with an accuracy of 100 µm (maximum error 0.89 mm). The maximum holding force of the stop was approximately 6 N. The system reached a Euclidean distance error of 3.21 mm between the needle tip and the target and a normal distance of 3.03 mm between the needle trajectory and the target. Conclusion: An all in one solution was presented which, attached to a robotic arm, assists the radiologist in breast cancer imaging and biopsy. It has a high needle placement accuracy, yet the radiologist is in control like in the conventional procedure.

Original languageEnglish
Pages (from-to)681-690
JournalInternational journal of computer assisted radiology and surgery
Volume15
Issue number4
Early online date25 Feb 2020
DOIs
Publication statusPublished - Apr 2020

Keywords

  • UT-Hybrid-D
  • Breast
  • End-effector
  • MRI
  • Registration
  • Robotics
  • Ultrasound
  • Biopsy

Fingerprint Dive into the research topics of 'Design of an end-effector for robot-assisted ultrasound-guided breast biopsies'. Together they form a unique fingerprint.

Cite this