Design of an Experimental Set-Up to Study the Behavior of a Flexible Surgical Instrument Inside an Endoscope

Jitendra Khatait, Dannis Michel Brouwer, Herman M.J.R. Soemers, Ronald G.K.M. Aarts, Justus L. Herder

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)
14 Downloads (Pure)

Abstract

The success of flexible instruments in surgery requires high motion and force fidelity and controllability of the tip. However, the friction and the limited stiffness of such instruments limit the motion and force transmission of the instrument. In a previous study, we developed a flexible multibody model of a surgical instrument inside an endoscope in order to study the effect of the friction, bending and rotational stiffness of the instrument and clearance on the motion hysteresis and the force transmission. In this paper, we present the design and evaluation of an experimental setup for the validation of the flexible multibody model and the characterization of the instruments. A modular design was conceived based on three key functionalities: the actuation from the proximal end, the displacement measurement of the distal end, and the measurement of the interaction force. The exactly constrained actuation module achieves independent translation and rotation of the proximal end. The axial displacement and the rotation of the distal end are measured contactless via a specifically designed air bearing guided cam through laser displacement sensors. The errors in the static measurement are 15 μm in translation and 0.15 deg in rotation. Six 1-DOF load cell modules using flexures measure the interaction forces and moments with an error of 0.8% and 2.5%, respectively. The achieved specifications allow for the measurement of the characteristic behavior of the instrument inside a curved rigid tube and the validation of the flexible multibody model.
Original languageEnglish
Article number031004
Pages (from-to)031004-031015
Number of pages12
JournalJournal of Medical Devices
Volume7
Issue number3
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Design of an Experimental Set-Up to Study the Behavior of a Flexible Surgical Instrument Inside an Endoscope'. Together they form a unique fingerprint.

Cite this