Designer surfaces for the quantification of multivalent biological interactions

Research output: ThesisPhD Thesis - Research UT, graduation UT

61 Downloads (Pure)

Abstract

Influenza represents a serious global health issue that causes millions of infections every year. Quantification of the multivalent interaction of the influenza virus binding at a host cell surface can lead to a better understanding of its multivalent binding energy landscape and provide ways to tackle biological questions regarding influenza virulence and zoonoses. For this reason, the development of platforms and devices that allow the quantification of these interactions is required. Specifically, when designing such platforms, various prerequisites, such as good antifouling properties, control over the surface ligand density and capability of mimicking cell membranes, need to be met.
The research discussed in this thesis is aimed at developing surface chemistry methods that allow the selective modification of surfaces with biomolecules for the study of multivalent biological interactions, such as that of the influenza virus with cell surface receptors. Two different approaches were examined in this dissertation. In the first part of the thesis, the use of functionalized poly-L-lysine (PLL) for the formation of polyelectrolyte monolayers has been discussed. With this method, the selective functionalization of several types of surfaces was achieved, and its efficacy in detecting DNA has been explored. The second part has focused on the formation of cell membrane mimics, based on supported lipid bilayers (SLBs), for the quantification of flu virus interactions.
Results obtained with PLL polymers showed the power of functionalizing a wide range of substrates for the controlled modification of surfaces with biomolecules while retaining their biological activity. At the same time, the SLB platform developed here provided access to the quantification of multivalent binding of the flu virus at artificial cell surface mimics with a precise control of the surface ligand/receptor density.
We expect that the surface functionalization methods developed here can be used for the further development of biosensors, allowing quantification of multivalent interactions and the discrimination of different types of flu virus strains. These techniques can be employed for the investigation of a wider range of biological, monovalent and multivalent interactions at interfaces, thus providing insight into complex biomolecular mechanisms.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • University of Twente
Supervisors/Advisors
  • Huskens, Jurriaan , Supervisor
Award date12 Sep 2019
Place of PublicationEnschede
Publisher
Print ISBNs978-90-365-4819-9
DOIs
Publication statusPublished - 12 Sep 2019

Fingerprint

Viruses
Lipid bilayers
Biomolecules
Cell membranes
Lysine
Ligands
Cell Surface Receptors
Bioactivity
Surface chemistry
Polyelectrolytes
Binding energy
Biosensors
Monolayers
Polymers
Health
DNA
Substrates

Cite this

@phdthesis{fe370c63fa4c47f09493b9c6fea37da0,
title = "Designer surfaces for the quantification of multivalent biological interactions",
abstract = "Influenza represents a serious global health issue that causes millions of infections every year. Quantification of the multivalent interaction of the influenza virus binding at a host cell surface can lead to a better understanding of its multivalent binding energy landscape and provide ways to tackle biological questions regarding influenza virulence and zoonoses. For this reason, the development of platforms and devices that allow the quantification of these interactions is required. Specifically, when designing such platforms, various prerequisites, such as good antifouling properties, control over the surface ligand density and capability of mimicking cell membranes, need to be met. The research discussed in this thesis is aimed at developing surface chemistry methods that allow the selective modification of surfaces with biomolecules for the study of multivalent biological interactions, such as that of the influenza virus with cell surface receptors. Two different approaches were examined in this dissertation. In the first part of the thesis, the use of functionalized poly-L-lysine (PLL) for the formation of polyelectrolyte monolayers has been discussed. With this method, the selective functionalization of several types of surfaces was achieved, and its efficacy in detecting DNA has been explored. The second part has focused on the formation of cell membrane mimics, based on supported lipid bilayers (SLBs), for the quantification of flu virus interactions.Results obtained with PLL polymers showed the power of functionalizing a wide range of substrates for the controlled modification of surfaces with biomolecules while retaining their biological activity. At the same time, the SLB platform developed here provided access to the quantification of multivalent binding of the flu virus at artificial cell surface mimics with a precise control of the surface ligand/receptor density.We expect that the surface functionalization methods developed here can be used for the further development of biosensors, allowing quantification of multivalent interactions and the discrimination of different types of flu virus strains. These techniques can be employed for the investigation of a wider range of biological, monovalent and multivalent interactions at interfaces, thus providing insight into complex biomolecular mechanisms.",
author = "{Di Iorio}, Daniele",
year = "2019",
month = "9",
day = "12",
doi = "10.3990/1.9789036548199",
language = "English",
isbn = "978-90-365-4819-9",
publisher = "University of Twente",
address = "Netherlands",
school = "University of Twente",

}

Designer surfaces for the quantification of multivalent biological interactions. / Di Iorio, Daniele .

Enschede : University of Twente, 2019. 168 p.

Research output: ThesisPhD Thesis - Research UT, graduation UT

TY - THES

T1 - Designer surfaces for the quantification of multivalent biological interactions

AU - Di Iorio, Daniele

PY - 2019/9/12

Y1 - 2019/9/12

N2 - Influenza represents a serious global health issue that causes millions of infections every year. Quantification of the multivalent interaction of the influenza virus binding at a host cell surface can lead to a better understanding of its multivalent binding energy landscape and provide ways to tackle biological questions regarding influenza virulence and zoonoses. For this reason, the development of platforms and devices that allow the quantification of these interactions is required. Specifically, when designing such platforms, various prerequisites, such as good antifouling properties, control over the surface ligand density and capability of mimicking cell membranes, need to be met. The research discussed in this thesis is aimed at developing surface chemistry methods that allow the selective modification of surfaces with biomolecules for the study of multivalent biological interactions, such as that of the influenza virus with cell surface receptors. Two different approaches were examined in this dissertation. In the first part of the thesis, the use of functionalized poly-L-lysine (PLL) for the formation of polyelectrolyte monolayers has been discussed. With this method, the selective functionalization of several types of surfaces was achieved, and its efficacy in detecting DNA has been explored. The second part has focused on the formation of cell membrane mimics, based on supported lipid bilayers (SLBs), for the quantification of flu virus interactions.Results obtained with PLL polymers showed the power of functionalizing a wide range of substrates for the controlled modification of surfaces with biomolecules while retaining their biological activity. At the same time, the SLB platform developed here provided access to the quantification of multivalent binding of the flu virus at artificial cell surface mimics with a precise control of the surface ligand/receptor density.We expect that the surface functionalization methods developed here can be used for the further development of biosensors, allowing quantification of multivalent interactions and the discrimination of different types of flu virus strains. These techniques can be employed for the investigation of a wider range of biological, monovalent and multivalent interactions at interfaces, thus providing insight into complex biomolecular mechanisms.

AB - Influenza represents a serious global health issue that causes millions of infections every year. Quantification of the multivalent interaction of the influenza virus binding at a host cell surface can lead to a better understanding of its multivalent binding energy landscape and provide ways to tackle biological questions regarding influenza virulence and zoonoses. For this reason, the development of platforms and devices that allow the quantification of these interactions is required. Specifically, when designing such platforms, various prerequisites, such as good antifouling properties, control over the surface ligand density and capability of mimicking cell membranes, need to be met. The research discussed in this thesis is aimed at developing surface chemistry methods that allow the selective modification of surfaces with biomolecules for the study of multivalent biological interactions, such as that of the influenza virus with cell surface receptors. Two different approaches were examined in this dissertation. In the first part of the thesis, the use of functionalized poly-L-lysine (PLL) for the formation of polyelectrolyte monolayers has been discussed. With this method, the selective functionalization of several types of surfaces was achieved, and its efficacy in detecting DNA has been explored. The second part has focused on the formation of cell membrane mimics, based on supported lipid bilayers (SLBs), for the quantification of flu virus interactions.Results obtained with PLL polymers showed the power of functionalizing a wide range of substrates for the controlled modification of surfaces with biomolecules while retaining their biological activity. At the same time, the SLB platform developed here provided access to the quantification of multivalent binding of the flu virus at artificial cell surface mimics with a precise control of the surface ligand/receptor density.We expect that the surface functionalization methods developed here can be used for the further development of biosensors, allowing quantification of multivalent interactions and the discrimination of different types of flu virus strains. These techniques can be employed for the investigation of a wider range of biological, monovalent and multivalent interactions at interfaces, thus providing insight into complex biomolecular mechanisms.

U2 - 10.3990/1.9789036548199

DO - 10.3990/1.9789036548199

M3 - PhD Thesis - Research UT, graduation UT

SN - 978-90-365-4819-9

PB - University of Twente

CY - Enschede

ER -