Despeckling SAR Images With Log-Yeo–Johnson Transformation and Conditional Diffusion Models

Yaobin Ma, Peng Ke, Hossein Aghababaei, Ling Chang, Jingbo Wei, Jingbo Wei

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
20 Downloads (Pure)

Abstract

Satellite images of synthetic aperture radar (SAR) sensors are contaminated by speckles from the coherent imaging mechanism. Although removing or mitigating speckle has been a critical issue for SAR applications, effective reduction continues to be a significant challenge for existing methods when preserving the intricate structures within SAR images. To address this issue, this work proposes a novel conditional diffusion model for SAR despeckling (DiffusionSAR). The new method explicitly learns data distributions by forward diffusion toward multiplicative gamma noise. The logarithmic and Yeo–Johnson (log-Yeo–Johnson) transformation are harnessed in preprocessing for fine-tuning or hybrid training. A prolonging steps technique is suggested in fine-tuning to match the preprocessing. A new synthetic dataset is designed for satellite SAR despeckling. The proposed method is compared with eight state-of-the-art methods using both synthetic and real-world SAR satellite images. The qualitative and quantitative evaluations confirm the effectiveness of the proposed method in structural preservation as well as noise reduction. A fine-tuning experiment using stacked multitemporal data shows the necessity of tine-tuning training in bridging the domain gap when trained with synthetic data and tested with real-world SAR data.
Original languageEnglish
Article number5215417
JournalIEEE transactions on geoscience and remote sensing
Volume62
DOIs
Publication statusPublished - 26 Jun 2024

Keywords

  • SAR despeckling
  • 2024 OA procedure
  • ITC-ISI-JOURNAL-ARTICLE

Fingerprint

Dive into the research topics of 'Despeckling SAR Images With Log-Yeo–Johnson Transformation and Conditional Diffusion Models'. Together they form a unique fingerprint.

Cite this